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Introduction

Introduction

Philosophy of the Workshop
The two primary purposes of LANL’s Computational Physics Student Summer Workshop are
(1) To educate graduate and exceptional undergraduate students in the challenges and applica-
tions of computational physics of interest to LANL, and (2) Entice their interest toward those
challenges. Computational physics is emerging as a discipline in its own right, combining
expertise in mathematics, physics, and computer science. The mathematical aspects focus on
numerical methods for solving equations on the computer as well as developing test problems
with analytical solutions. The physics aspects are very broad, ranging from low-temperature
material modeling to extremely high temperature plasma physics, radiation transport and neu-
tron transport. The computer science issues are concerned with matching numerical algorithms
to emerging architectures and maintaining the quality of extremely large codes built to per-
form multi-physics calculations. Although graduate programs associated with computational
physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary
field is relatively small and is typically not focused on the aspects that are of primary interest
to LANL. Furthermore, more structured foundations for LANL interaction with universities
in computational physics is needed; historically interactions rely heavily on individuals’ per-
sonalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build
an educational network of LANL researchers, university professors, and emerging students to
advance the field and LANL’s involvement in it.

This was the sixth year for the Summer Workshop and the fifth in a series of reports [69]
[70] [71] [72]. As before, the workshop’s goals were achieved by attracting a select group of
students recruited from across the U.S. and immersing them for ten weeks in lectures and inter-
esting research projects. The lectures provided an overview of the computational physics topics
of interest along with some detailed instruction while the projects gave the students a positive
experience accomplishing technical goals. Each team consisted of two students working under
one or more LANL mentors on specific research projects associated with predefined topics.
This year, the topics included asynchronous Navier-Stokes advection calculations on new ar-
chitectures, multi-material variable density turbulence calculations, neutron transport, finite
elements, opacity modeling, mesh-free methods, analysis of Richtmyer-Meshkov instabilities,
supernova calculations, and high-explosives modeling. The students’ growth was furthered by
their participation on teams where their teammates were sometimes of a different academic
year. It also developed their skills by requiring them to produce written and oral reports that
they presented to peers, mentors, and management.
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Funding and Participation Profile

Funding and Participation Profile

LANL Staff
The Advanced Scientific Computing (ASC) Program at Los Alamos National Laboratory spon-
sors this Summer Workshop by funding the workshop coordinator and paying the lease for the
workshop facility. Funding for the students’ stipends come from a variety of programmatic
sources. A large majority of them fall under various projects that are part of the ASC Program,
but a few other programs also provide funding for some students. This year, there were sixteen
mentors supervising twelve teams, which is currently the maximum allowed in this workshop.
Mentors from XCP, CCS, and T participated. Broad participation is welcomed and it is hoped
that it continues in future years.

Students
Eighty students applied for admission to the workshop, all eligible U.S. citizens with the break-
down shown in the chart on the next page. The twenty-two who ultimately were selected and
participated were from the following schools: UC Berkeley, New Mexico Institute of Mining
and Technology, Univ. of Kentucky, Univ. of Oregon, Univ. of Colorado, Dickinson Col-
lege, Univ. of Illinois at Urbana-Champaign, Harvey Mudd College, Florida State University,
Univ. of Massachusetts Dartmouth, UC-Santa Barbara, Univ. of Michigan, UCLA, Univ. of
Minnesota, Oregon State university, UT-Austin, Univ. of Tennessee Knoxville, Univ. of Iowa,
Univ. of Florida, Drake University, Stanford, West Virginia University, and Virginia Tech.

Lectures
In this sixth year of the Summer Workshop, efforts toward more tightly integrating the lecture
series were continued. The increased integration is part of an effort to transform the stand-
alone lectures into a sequence exhibiting a more course-like feel. A foundational lecture at
the beginning of the Summer Workshop, introducing the fundamentals of transport theory,
was continued this year to provide a common basis upon which several other lectures could
build. Also the development of a one-dimensional hydrocode was performed in class; the
resulting code provided a basis for other lecture materials and for exploratory studies that
some of the students performed at the beginning stages of their projects. The approximately 28
hours of lectures, for which the students’ attendance was required, were augmented with other
lectures and demonstrations for which the students’ attendance was optional. These lectures
were provided to help students who were lacking certain skills develop them quickly to aide
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Funding and Participation Profile

Figure 2.1: This figure shows the number of students who applied to the Summer Workshop
and how many were accepted and participated, broken down by academic year. In this figure
“G1” means “first-year graduate student” at the time of the workshop,.i.e., starting their first
year of graduate school in the fall after the workshop. “G2” means “second-year graduate
student” at the time of the workshop, i.e., starting their second year of graduate school in the
fall after the workshop.
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Funding and Participation Profile

them during the summer. The lectures included a tutorial on C++ object-oriented programming,
Python programming, and Unix.

The lectures were scheduled to be most frequent in the beginning of the workshop, when the
students’ research was just getting started and they needed the most background information.
Their frequency dropped significantly until there were no lectures at all in the latter weeks of
the workshop so that the students could focus on their research. The lectures are summarized
in the table that follows.

Required Lectures
Title Hrs. Lecturer
Essentials of Transport Equations 2 S. Runnels
Introduction to Lagrange Hydro 1 S. Runnels
Intro to High-Performance Computing at LANL 1 R. Cunningham
Introduction to Hydro Terminology and Artificial Viscosity 1 S. Runnels
Survey of ALE Methods 1 N. Morgan
Interface Reconstruction Methods 1 M. Shashkov
Introduction to Slidelines 1 N. Morgan
Plasticity Modeling 1 S. Runnels
Warm Dense Matter Simulation 1 O. Certik
Live Demo: Development of a 1-D Gas Hydrocode 1 S. Runnels
Live Demo: Adding Plasticity to a 1-D Hydrocode 1 S. Runnels
Introduction to Thermal Radiation Transport 1 T. Urbatsch
Introduction to Molecular Dynamics 1 C. Starrett
Radiation Hydrodynamics 1 S. Ramsey
Turbulence Modeling 2 D. Israel
Opacity 1 C. Fontes
Sn Discretization Methods 1 J. Hill
Galerkin Finite Element Method 1 S. Runnels
Introduction to Monte Carlo and MCNP 3 F. Brown
Mimetic Methods for Diffusion 1 S. Runnels
V & V and Uncertainty Quantification 1 G. Weirs (Sandia)
Hypervelocity Impact Short Course Highlights 3 J. Walker (SwRI)

Optional Lectures
Live Demo: Tutorial in C++ Programming 2 S. Runnels
Live Demo: Unix Tutorial 1 S. Runnels
Introduction to Python 1 D. Israel
Python, Git, and Jupyter Notebooks 1 O. Certik
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Introduction to the Technical Reports and
the Teaming Arrangements

The Summer Workshop is primarily an educational endeavor with a healthy emphasis on re-
search. Because of that, most of the chapters that follow represent actual research progress,
some of which are worthy of conference or peer-reviewed publication. However, other chap-
ters may simply represent the students’ educational progress in a particular area. Because of
that mixture, it is worth mentioning that the results and opinions expressed in these reports may
or may not be representative of the ASC program’s position in the associated technical areas.

In this workshop, each student is paired with another student under one or more mentors,
and in that arrangement the students are not necessarily at the same academic level or back-
ground. Developing a team-based approach to the research project is one of the secondary
objectives of the workshop, but not the primary objective, which is the students’ education.
The technical reports that follow may or may not have a strong teaming arrangement behind
them. For some projects, close teaming is the best choice, while for others it is more appropriate
to allow the students to explore the project area at their own pace. These aspects are discussed
in some of the projects’ Introduction section.

While the students’ reports are integrated in this report, each chapter is intended to essen-
tially be a stand-alone document. Nomenclature may not be consistent between the chapters.
Figures, equations, and concepts may be repeated.
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Finite Element Methods for 2D Neutron
Transport

Team Members
Hailee Peck and Connor Kenyon

Mentor
Jim Hill

Abstract

Since the 1940s the Neutron Transport Equation has been used to study the behavior of
neutrons. Many methods have been developed to discretize the equation in an attempt to
solve for the flux, the most popular of which has been the discrete ordinates (Sn) method.
In an attempt to eliminate ray effects that commonly occur in the discrete ordinates so-
lution, we discretize and solve the 2D Neutron Transport equation using finite element
methods and integrating out angular dependence, using a low-order, continuous-in-angle
treatment.
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Introduction

Boltzmann Equation for Neutron Transport

The Boltzmann Transport equation is one of the most intricate partial differential equations that
is in regular use today. With 7 independent variables, including separate spatial and angular
treatment being required, it take a large amount of processing power to be able to handle and
solve with any degree of accuracy.

1
v

∂

∂ t
ϕ(r,ΩΩΩ,E, t)+ΩΩΩ ·∇ϕ(r,ΩΩΩ,E, t)+Σt(r,E, t)ϕ(r,ΩΩΩ,E, t)−

∫
∞

0

∫
4π

ΣS(r,ΩΩΩ
′
→ΩΩΩ,E

′
→ E, t)ϕ(r,ΩΩΩ

′
,E
′
, t)dΩ

′
dE

′
= s(r,ΩΩΩ,E, t)

Identifying each term of the equation in order from left to right, they are as follows: on
the left-hand side there is the time-change of the flux, the loss due to streaming through the
boundary, and the loss due to neutron reactions within the domain as well as a source term
that handles inscattering, which is on the left hand side because it contains a flux term. On the
right-hand side there is only the generic source.

Prior Research

In the late 1970s, two doctoral dissertations came out of the University of Michigan detailing
work done on applying Finite Element Methods to the Neutron Transport Equation. Various
simplifications were made which left room for us to expand upon their work, but we include
brief overviews of each dissertation in an attempt to give a glimpse into work already done on
the topic.

1. Martin, 1976
In 1976, William Martin published his dissertation [60] concerning the application of
the finite element method to the neutron transport equation. In this work, he applies the
Galerkin finite element method to the one-dimensional, static, monoenergetic neutron
transport equation. The equation he uses to derive the weak form is shown below.

ΩΩΩ ·∇ϕ(r,ΩΩΩ)+Σt(r)ϕ(r,ΩΩΩ) =
∫
4π

dΩΩΩ
′
Σs(r,ΩΩΩ′→ΩΩΩ)ϕ(r,ΩΩΩ′)+S(r,ΩΩΩ)

This equation is subject to the boundary condition that, on the incoming boundary,

ϕ(r,ΩΩΩ) = ϕ0(r,ΩΩΩ)

Note that there is no partial time derivative, nor is there a sum of scattering terms over a
number of energy groups.

Martin elects to use test functions from the space H 1 =
{

ψ |
s

V

[
|ψ|2 + |∇ψ|2

]
< ∞

}
.

This Sobolev space suffices for choice of our test functions because, when applying the
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Galerkin finite element method to the equation, there is only one partial derivative that
gets transferred to the basis functions due to integration by parts. Thus, we only need to
choose functions which behave nicely with respect to a single derivative.

2. Yehnert, 1978
Two years after Martin’s work on the neutron transport equation, Carl Yehnert published
his own dissertation [88], also dealing with the application of the finite element method
to the neutron transport equation, but this time Yehnert used the two-dimensional mo-
noenergetic equation. The equation formulation is the same as Martin’s, except that the
r vector now has an added spatial dimension. He also uses the same Sobolev space to
pull test functions from that Martin did. He concludes that the goal of eliminating ray
effects is accomplished, but that the solving of the matrix equation takes too long for the
method to be preferable to those already existing at the time.

Discretization

Mesh Generation

Early in our work, since neither of us had prior experience in creating a finite element solver, it
was necessary to spend time familiarizing ourselves with the required data structures. Two-
dimensional finite element methods require some type of mesh, often either triangular or
square, so we explored several options to gain a better understanding of how either type of
mesh needs to be built and accessed. Our frame to build all of our initial test meshes was a
standard square grid of evenly spaced nodes.

Figure 4.1: The grid of test points on which all of the meshes were generated

Our initial mesh included no refinement and was a square mesh connecting each of the
points in the grid. This was a straightforward process, during which we indexed each zone
going from left to right and bottom to top. Our indexing will be useful later when mapping the
master element to a local element, in order to form the functions over the local element. The
specific equations used to do this are detailed in the section concerning the Diffusion Solver.
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Figure 4.2: A square mesh

In an effort to generate a more geometrically accurate mesh, we also explored creating
triangular meshes, which are better suited to discretizing boundaries of domains. There were
several complications with this, mainly in indexing and implementing multimaterial capability
and further refinement.

Figure 4.3: A triangular mesh

Since the goal with all of this is to be able to build a finite elements solver that can handle
multiple materials while solving for the neutron transport equation, we needed to have a mesh
capable of multiple levels of refinement. This was easiest to achieve with the square mesh, and
yielded some fruitful and helpful results

Finite Element Methods

Finite Element methods were first developed in the 1950s to handle problem solving in struc-
tural mechanics, and only later was the mathematical background built up. The basic idea
behind finite element methods, as the name might suggest, is that the domain is split into a

Final Reports: 2016 Computational Physics Student Summer Workshop Page 14



Finite Element Methods for 2D Neutron Transport

Figure 4.4: A square mesh with multi-material style refinement

finite number of local elements (in our case, quadrilaterals), and then the solution is approxi-
mated using piecewise polynomials over each local element. This is done by evaluation on a
master element and then a mapping from the master element to the local element. Because one
does not need to expand the solution with regards to a function defined over the whole domain,
finite element methods are particularly well-suited to unstructured meshes. There is no need,
as there is in finite difference or finite volume methods, to incorporate a difference between
meshes, so it does not matter what the elements look like, only that their values match on the
edges of the elements so as to keep the solution continuous.

The general process of finite elements entails multiplying the equation by a test function,
selected from a specific test space, and then to expand the solution variable in terms of basis
functions and integrate by parts to take the derivatives off of the solution variables and onto the
test functions. The basis functions are generally hat functions, defined to be one at the node to
which it corresponds and zero at all other nodes. In the Galerkin weighted residual, the basis
functions and test functions are the same. Then, once the weak integral form of the equation
has been created, the problem is solved, but in terms of a weighted residual equal to zero in an
average sense, instead of the initial exact problem. However, despite the manipulation of the
equations, much work has been done to prove that the solution obtained corresponds exactly to
the solution desired from the exact form of the equation.

Another very nice aspect of finite element methods is that the global matrix formed to hold
all the values for interactions of distinct node elements is sparse. The reason for this can be
seen visually in Figure 4.6, where the two functions, 1 and 4, that have been defined for a
single element, definitely overlap. Thus the interaction entry for these basis functions will be
non-zero. However, if we consider basis function 1 and another basis function on one of the
boundary elements, it is clear that the interaction between the two will be zero, so that entry
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Figure 4.5: A set of basis ”hat” functions, in one dimension, defined on four nodes. It is easy
to see that each ϕi is 1 at node i and zero at all other nodes.

in the matrix will be zero. Thus the global matrix will be mostly zero entries. This aids in
computation, as the dimensions of the matrix can grow to be rather large depending on the
number of nodes in the mesh.

Diffusion Solver
Since the Boltzmann equation is significantly more involved and more complex than most
equations, we decided to start first by creating a finite element solver for a simpler equation:
the heat equation. We modeled the diffusion of heat over a square mesh.

Heat Equation and Discretization

The equation we utilized for our diffusion solver was

∂u
∂ t
−α∇

2u = 0

We consider the case where α = 1, and then put the equation from its standard form into
its weak form

∂u
∂ t

ψiψ j +
∂ψi

∂x
∂ψ j

∂x
+

∂ψi

∂y
∂ψ j

∂y
= 0

In order to discretize this function, we used Galerkin Finite Elements, choosing our basis
functions ψi to be linear. Once we had our basis functions, the only thing left to prepare was
how to discretize the numerical integrals. For this we used Gaussian quadrature with nine
points and weights, for which a detailed diagram is given in the section describing the Neutron
Transport Solver.
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Figure 4.6: Two basis functions in two dimensions. Again, it is easy to see how they have been
defined.

Developing the Solver

The first step in creating the solver was to make the functions for each local element. To do
that, we created a generic master element, in the shape of a unit square. Then we mapped this
function from the master element onto the local element so that whatever the shape of the local
element was, it was able to be accurately integrated over because of the master element.

X(ξ ,η) = x1ψ̂1 + x2ψ̂2 + x3ψ̂3 + x4ψ̂4

Y (ξ ,η) = y1ψ̂1 + y2ψ̂2 + y3ψ̂3 + y4ψ̂4

The Jacobian that we used in order to convert from the master element to the local element
is then:

|J|= ∂x
∂ξ

∂y
∂η
− ∂y

∂ξ

∂x
∂η

From there, we are able to calculate the integrals over each element and then generate the
local element matrices, which we can put directly into the global matrix, mapping each term to
its respective location in the global matrix. Since this global matrix was diagonally dominated,
we made a sparse matrix in order to improve run time. In order to handle time stepping, we
used finite difference for time and had to recalculate the global matrix within each time step.
Finally, to calculate a solution, we applied Dirichlet boundary conditions and created a Jacobi
iteration solver and then plotted our solutions.

One of our plots that we were able to generate with our diffusion solver was done in order
to visually test the results. By using a Dirichlet boundary condition of 15 around the outside
edge as the initial condition, we expected to see a decline in temperature towards the center,
which is shown in Figure 4.7.
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Figure 4.7: The plotted results from the transient heat diffusion solver over a 30 by 30 grid
over 20 time steps, ranging from t=0 to t=10

Neutron Transport Solver
Once we had finished the transient diffusion solver, much of the technical details needed to pro-
gram the neutron transport solver were already in place, so it became somewhat more straight-
forward to program the transport solver.

Basis functions

There were two sets of basis functions that we had to choose: spatial basis functions, and
angular basis functions. We decided to use Legendre polynomials up to degree three to deal
with the angular dependence in the scattering term, where the Legendre polynomials are given
by

P0(x) = 1

P1(x) = x

P2(x) =
1
2
(3x2−1)

P3(x) =
1
2
(5x3−3x)

However, the Legendre polynomials had to be re-evaluated to be in terms of (angle in)
- (angle out). In the transport equation, these correspond to the ΩΩΩ and ΩΩΩ

′ terms, which in
two dimensions reduce to θ and θ ′ in the plane. So, we evaluate the polynomials in terms
of cos(θ − θ ′) = cos(θ)cos(θ ′)− sin(θ)sin(θ ′). We rename this to avoid typing it out each
time, and instead evaluate the polynomials in terms of ζ = µλ −

√
1−µ2

√
1−λ 2, where

µ = cos(θ), λ = cos(θ ′).
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Figure 4.8: Diagram showing the angle in, θ , versus the angle out, θ ′.

So, the angular scattering terms become

P0(ζ ) = 1

P1(ζ ) = µλ +
√

1−µ2
√

1−λ 2

P2(ζ ) =
1
2

[
6µ

2
λ

2 +6µλ

√
1−µ2

√
1−λ 2−3µ

2−3λ
2 +2

]
P3(ζ ) = 10µ

3
λ

3 +10µ
2
λ

2
√

1−µ2
√

1−λ 2 +6µλ − 15
2

µ
3
λ − 15

2
µλ

3 +
√

1−µ2
√

1−λ 2

−5
2

µ
2
√

1−µ2
√

1−λ 2− 5
2

λ
2
√

1−µ2
√

1−λ 2

Then, for the spatial basis functions, we used Lagrange polynomials of degree one. The
following figures show the Lagrange basis function used for each node of the master element.
Note that the master element is defined over a (ξ ,η) coordinate system.

Node number Lagrange basis function
1 ψ1 = 0.25(ξ −1)(η−1)
2 ψ2 = 0.25(ξ +1)(1−η)
3 ψ3 = 0.25(ξ +1)(η +1)
4 ψ4 = 0.25(1−ξ )(η +1)
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Angular treatment

To deal with the angular dependence, we assume a first-order approximation to be sufficient,
thus approximating the flux to depend linearly on the angle: ϕ = ϕ0 + µϕ1. So, for each of
the angular scattering terms, we first expand in terms of a sum over the Legendre polynomials,
and then for each of those terms, we expand ϕ into its linear dependence. However, for the
scattering and fissile terms, we do the expansion linearly in λ , since the scattering and fission
depends on θ ′.
The following expansion also relies on a multigroup treatment for energy. We decide to deal
with energy this way in order to reduce the amount of dependence existent in the flux and cross-
sectional data. Specifying discrete energy groups allows us to evaluate the continuous energy
dependence by evaluating the flux and cross-sections as constants with respect to a certain en-
ergy level, and then just sum over all discrete energy levels considered. This is represented in
the following equation by the sum over g′.

G

∑
g′=1

3

∑
`=0

Σ
`
g′gP̀ (ζ )ϕg′

=
G

∑
g′=1

[
Σ

0
g′gP0(ζ )(ϕ0

g′+λϕ
1
g′)+Σ

1
g′gP1(ζ )(ϕ0

g′+λϕ
1
g′)+Σ

2
g′gP2(ζ )(ϕ0

g′+λϕ
1
g′)+Σ

3
g′gP3(ζ )(ϕ0

g′+λϕ
1
g′)
]

In order to complete the low-order, continuous-in-angle treatment, we then integrate the
scattering and fission terms from -1 to 1 with respect to λ . Then, once we have finished the
integration over those terms, we integrate the rest of the equations from -1 to 1, first with
respect to dµ and then with respect to µ dµ . We have to do the integration twice because,
with the way that we approximated the angular dependence for the flux, we now need twice
the number of equations to close the system. Due to the integration first over

∫ 1
−1 dµ for the

first weak form equation and then over
∫ 1
−1 µdµ for the second weak form equation, we end up

with two equations that rely mostly on either ϕ0 or ϕ1, but there is not much mixing.
The following weak form equation is obtained from

∫ 1
−1 dµ , and it is clear that it relies

heavily on ϕ0 and only has one term dependent on ϕ1.

1
v

∂

∂ t
ϕ

0
j (ψiψ j)−

1
3

ϕ
1
j

(
∂ψi

∂x
ψ j

)
− π

4
ϕ

0
j

(
∂ψi

∂y
ψ j

)
+Σtϕ

0
j (ψiψ j) =

G

∑
g′=1

[
2Σ

0
g′g +

π2

8
Σ

1
g′g +

2
3

Σ
2
g′g +

3π2

64
Σ

3
g′g

]
(ϕ0

j )g′(ψiψ j)+ χ

G

∑
g′=1

[
(νΣ f )g′(ϕ0

j )g′(ψiψ j)
]
+

1
2

Q0ψi

This second weak form equation is obtained from
∫ 1
−1 µdµ and relies primarily on ϕ1.

1
v

∂

∂ t
ϕ

1
j (ψiψ j)−ϕ

0
j

(
∂ψi

∂x
ψ j

)
− 3π

16
ϕ

1
j

(
∂ψi

∂y
ψ j

)
+Σtϕ

1
j (ψiψ j) =

G

∑
g′=1

[(
2
3

Σ
1
g′g +

9π2

128
Σ

2
g′g +

2
5

Σ
3
g′g

)
(ϕ1

j )g′(ψiψ j)
]
+

3
2

Q1ψi
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Implementation

While the goal was to keep the transient and multigroup aspects of the neutron transport equa-
tion, several simplifications were needed in order to approximate the numerical solution of the
equation. First, for the time step, we decided to use forward finite difference, replacing the
∂ϕ

∂ t term with ϕnew−ϕold

∆t . Then, as the weak form requires integration of basis functions, we ap-
proximated this integration with Gauss quadrature on nine points in the element. The following
figure adapted from [9] provides a visual of the quadrature points with their weights.

w7 = 25
81 w8 = 40

81 w9 = 25
81

w4 = 40
81 w5 = 64

81 w6 = 40
81

w1 = 25
81 w2 = 40

81 w3 = 25
81

In the above, each weight wi corresponds to a point (ξi,ηi), given by

(ξ1,η1) =
(
−
√

3
5 ,−

√
3
5

)
(ξ2,η2) =

(
0,−

√
3
5

)
(ξ3,η3) =

(√
3
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√
3
5

)
(ξ4,η4) =

(
−
√

3
5 ,0
)

(ξ5,η5) = (0,0)
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(√

3
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)
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(
−
√

3
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√

3
5

)
(ξ8,η8) =

(
0,
√

3
5

)
(ξ9,η9) =

(√
3
5 ,
√

3
5

)
The only boundary conditions we were prepared to handle were Dirichlet boundary con-

ditions, but as you will notice from the weak form equations in the section regarding angular
treatment, we temporarily disregarded boundary terms. We also temporarily disregard inho-
mogeneous source terms.

Finally, we decided to use 12 different energy groups for our formulation of the 2D neutron
transport equation. There are thousands of energy levels that can potentially be used, but we
decided 12 would be sufficient to give data showing the trends that we cared about.
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Future Work
As it stands, we finished the diffusion solver and got some nice results plots from that code,
but the neutron transport solver remains unfinished. We currently have it running for a single
material, but as previously mentioned, have not yet edited it to incorporate boundary terms or
inhomogenous source terms. Eventually, we hope to be able to run the code for a multi-/mixed
material problem. If this is accomplished, we will be able to compare the results with the
PARTISN code developed at Los Alamos National Lab, several of which are pictured below.
The following images depict results from a problem where we have a 500 cm by 500 cm block
of “perfect” water, with the middle 100× 100 square being filled with a 4% U235 and 96%
U238 Uranium mixture at 18.7 g/cc. The problem is run for 12 energy groups, all initialized to
1, and run over a period of 0.25 microseconds. The mesh was 1000×1000 elements.

Figure 4.9 shows the results for energy group 7 of this problem, while Figure 4.10 shows the
group 12 flux results from PARTISN. It is quite easy to see the ray effects that come into play
with the discrete ordinates code, which we are hoping will be eliminated with finite elements.

Figure 4.9: PARTISN results for energy group 7

In addition to finishing the code itself, it would be interesting to extend it to handle more
energy groups or perhaps incorporate a more sophisticated treatment of the transient term, as
opposed to simple forward-finite-difference.
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Figure 4.10: PARTISN results for energy group 12. Note the ray effects seen in the flux at the
corners of the uranium square.
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Interaction Between Waves and Vortices

Team Members
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Mentor
Balu Nadiga and Nathan Urban

Abstract

Waves and vortices are two of the most fundamental modes in fluid motion, and their
interactions are important in a wide range of applications. This report represents the stu-
dents introduction to the field of oceanic flow utilizing the shallow water equations and the
quasigeostrophic approximation. While the original goal was to explore the wave-vortex
interaction at the submesoscale, the path to the analysis required many intermediate steps
and exploration, involving numerical solution of partial differential equations using high
performance computing. Several different initial conditions, primarily piecewise functions
and combinations of trigonometric functions, and avenues of investigation, such as lin-
earized models and nonlinear models, were considered to achieve this goal. Several of the
setups considered were found to be ineffective for the investigation of energy cascade. In
this report several models and initial conditions are considered, discussed and discounted,
and some important comparisons between the shallow water and quasigeostrophic models
are made.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 24



Interaction Between Waves and Vortices

Introduction
In order to predict the behavior of the world’s oceans, understanding the ocean’s circulation is
extremely important. Typically, the large scale ocean currents is a balance between a pressure
gradient and Coriolis forces, which is known as a geostrophic balance. An active area of
research focuses on understanding how this balance is maintained and the route by which
energy is processed from large to small scales, dissipated as heat. This project uses a few
of the conservation equations developed in fluid mechanics to model the fluid motion in the
interaction between waves and vortices.

The currents in the ocean are typically over different scales. The current motion is typically
dependent on the Coriolis force, rotation and pressure gradients. One model which adequately
models the motion of the waves and vortices is through the use of the shallow water equation.
In this model, it is assumed that the aspect ratio H/L is small and that the fluid is in hydro-
static equilibrium in the vertical direction. This model can be further approximated using either
the quasigeostrophic approximation or Boussinesq approximation. In the quasigeostrophic ap-
proximation, the contribution of the rotation is low and in the Boussinesq approximation, the
interaction between the vortical modes and internal wave is weak [65]. This report consid-
ers the shallow water equations and the quasigeostrophic equations and compares the results
obtained from the two models.

The shallow water equations have been considered to be used as a computational model to
simulate the ocean currents as early as the 1960s [55]. In one particular approach addressed in
1994, a numerical multigrid solver is utilized and the shallow water equations are discretized
using finite-differences and a temporal discretization. Using this model, it was found that the
shallow water model breaks down at weak and strong stratification [86]. This report also con-
siders the shallow water model, however, unlike Yavneh and McWilliams (1994), the model is
compared with the quasigeostrophic approximation using a Runge-Kutta scheme. The shallow
water model was also considered by Thomas (2016) and like this report, the quasigeostrophic
approximation was explored to determine the break down of the approximation for varying
strengths of rotation and stratification [78].

Additionally, the regime of the break down region of the quasigeostrophic equation was also
explored by Kafiabad and Bartello (2016) [41]. In this analysis, they consider order of balance,
time, length scale and strength of rotation and/or stratification through a parametric study. In
doing so, they found that for small values of rotation, the results remain balanced and for higher
strengths of rotation, the extent of the unbalanced mode increases and the inertial-gravity wave
effects increases. In this report, we also use the quasigeostrophic and shallow water equations
by considering initial conditions which for high rotation strength have a higher contribution of
the inertial gravity wave. We also use a Runge-Kutta scheme to observe the evolution of the
potential vorticity and energy and model the wave-vortical interactions.

In particular, this report describes the comparisons between the shallow water equations
and the quasigeostrophic approximation and is organized as follows. The section to follow
describes the theoretical foundations, particularly equations considered and the metrics used
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to make the comparisons. The section entitled ”Technical Approach” describes the code veri-
fication techniques, initial conditions and input parameters used in the code and the ”Results”
section shows some of the comparisons and findings obtained for low resolution and some of
the preliminary results obtained using high resolution. Lastly, recommendations for studies
which should be done are discussed in the ”Future Work” section.

Theory
In order to model the ocean, three different models have been typically considered. These
three models are the (1) shallow water equations, (2) Boussinesq approximation and (3) the
quasigeostrophic approximation. In this report, the shallow water equations and the quasi-
geostrophic approximations are considered and discussed. Thus, this section discusses the
theory behind the shallow water equations and then proceeds to discuss the quasigeostrophic
approximation. For generality and convenience, everything has been rendered dimensionless
in the form of a Rossby number, Froude number, Burger number and nondimensional length
scales.

The nondimensional numbers are defined as follows. The Rossby number (Ro) is defined
in terms of the the magnitude of the velocity (U), the Coriolis frequency ( f ) and the horizontal
dimensionless length (L) and is shown as (5.1):

Ro =
U
f L

(5.1)

The Froude number (Fr) is also related to the velocity (U), gravitational constant (g) and height
(H):

Fr =
U√
gH

(5.2)

The Rossby and Froude numbers are used to characterize the importance of rotation and strati-
fication, respectively. The Burger number, Bu, is a parameter which is a function of the Rossby
and Froude numbers and is defined as:

Bu =
(

Ro
Fr

)2

(5.3)

The Navier-Stokes equations are commonly used in fluid mechanics to describe the motion
of a fluid. To describe ocean circulation, these equations which include the stratification and
rotation are considered. The shallow water equations stem from these equations assuming a
small aspect ratio, H/L, where H and L are the vertical and horizontal length scales of interest
and that the fluid is in hydrostatic equilibrium in the vertical direction. The three conserva-
tion equations of interest for these simulations are conservation of momentum, continuity and
conservation of potential vorticity. (5.4) shows is the conservation of momentum equation in
the shallow water equations, (5.5) is the continuity equation and (5.6) is the conservation of
potential vorticity equation:

∂u
∂ t

+(u ·∇)u =− 1
Ro

∇η +
1

Ro
(u× z)+ s.s.d. (5.4)
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∂η

∂ t
+u ·η +(η +

Bu
Ro

)(∇ ·u) = s.s.d. (5.5)

∂q
∂ t

+(u ·∇)q = s.s.d. (5.6)

Here, the u is the velocity vector of the fluid motion, η is the nondimensional depth, q is
the potential vorticity and s.s.d. denotes the small scale dissipation contribution. In this report,
we denote the partial derivative as either ∂varu or ∂u/∂var, where var denotes the derivative of
interest.

Using these equations, the potential vorticity, qSW for the shallow water equations is deter-
mined using the Coriolis frequency, vorticity, ω , and a sum of the nondimensional height and
the mean depth, Bu/Ro, and is defined as:

qSW =
f +ω

η +Bu/Ro
(5.7)

Here, the vorticity ω is defined as the curl of the velocity:

ω = ∇×u (5.8)

Using the nondimensional form of the shallow water equations and a few assumptions, the
quasigeostrophic approximation results. Here, the primary assumptions in the quasigeostrophic
approximation are that the Rossby number must be small and the rotation is high. In this
approximation, the potential vorticity is defined as:

qQG = ∇
2
ψ− 1

Bu
ψ (5.9)

Here, ψ is defined as the stream function.

In these two models, the definitions of the potential vorticity for the shallow water model
and the quasigeostrophic approximation are slightly different with different units as well.
Therefore, while qualitative comparisons can be made by comparing potential vorticities, for
quantitative comparisons, analysis using energies or enstrophy need to be considered. The
energy equations (per unit mass) are defined as (5.10) for kinetic energy and (5.11) for poten-
tial energy, where H/L is defined as the aspect ratio and w is the vertical velocity (which is
neglected for both models):

k =
1
2
(u2 +

(
H
L

)2

w2) (5.10)

p =
1
2

Fr
Ro

∂ψ

∂ z
(5.11)

The total energy is defined as a sum of the kinetic and potential energy (T = k + p). Addi-
tionally, the enstrophy is defined as the integral of the square of the vorticity:

ε(ω) =
1
2

∫
S

ω
2dS (5.12)
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These are the metrics used in comparing the results obtained from the quasigeostrophic
approximation and that of the shallow water equations and are discussed in the remaining
sections.

Code Verification
In order to show that the codes are working correctly, balanced initial conditions (initial con-
ditions with no perturbation) were first considered. These initial conditions were used as a
verification and validation check, because the results do not evolve in time and can be easily
proved analytically. The functions considered here were trigonometric functions which can
be determined analytically by taking quick derivatives or integrals and are periodic functions.
Additionally, for simplicity, nondimensional quantities are considered and since there is no
perturbation, the potential vorticity is shown (In the other sections, the perturbed potential
vorticity is considered).

The functions were defined for x (u) and y (v) velocity as the shallow water and quasi-
geostrophic equation inputs. For shallow water equations, since a height would need to be
defined, the stream function (ψ(x,y)) needs to also be evaluated which has an integral relation
to the u and v velocities:

ψ(x,y) =−
∫

u dy+
∫

v dx (5.13)

To obtain the height, h(x,y), needed in the shallow water equations, the stream the stream
function is multiplied by fcor

g , where fcor is the Coriolis frequency and g is the gravity parame-
ter, and then added to the mean, hmean:

h(x,y) = hmean +ψ(x,y)
fcor

g
(5.14)

This equation is inputted into the shallow water code.

The codes output the height and stream function, for the shallow water and quasigeostrophic
equations, respectively, which can easily by related using (5.14), u and v velocities, kinetic, po-
tential and total energy throughout the simulation run and the potential vorticity, q, defined as
(5.15) for the quasigeostrophic equations and defined as (5.16) for the shallow water equations:

q(x,y) = ∇
2
ψ(x,y)− 1

Bu
ψ(x,y) (5.15)

q(x,y) =
∇×u+ fcor

h
(5.16)

In order to compare the outputs of the shallow water and quasigeostrophic equations, three
different cases were considered: (1) u = cos(2πy

ly
), v = 0; (2)u = 0, v = cos(2πx

lx
); and (3)

u = cos(2πy
ly

), v = sin(2πx
lx

).
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Figure 5.1: Potential vorticity from the shallow water model using (5.18) (left) and the quasi-
geostrophic approximation using (5.19) (right)

To begin the analysis, Case 1 is first considered. Here, the corresponding height in the
shallow water equations is defined as (5.17):

h(x,y) = hmean−
ly fcor

2πg
sin(

2πy
ly

) (5.17)

In this case, the corresponding analytical potential vorticities for the shallow water equa-
tions and the quasigeostrophic approximation, respectively, are as follows:

q(x,y) =
1

hmean−
ly fcor
2πg sin(2πy

ly
)
(
2π

ly
sin(

2πy
ly

)+ fcor) (5.18)

q(x,y) =
(

2π

ly

)
sin(

2π

ly
sin(

2πy
ly

)+
1

Bu
ly
2π

sin(
2πy
ly

) (5.19)

Figure 5.1 shows the resulting plot obtained from the potential vorticity using the shallow
water via (5.18) (left) and the quasigeostrophic approximation using (5.19) (right). In this sce-
nario, since the potential vorticity only has a y dependence, it appears that the plot is consistent
to the expected result.

While it appears that qualitatively, the results look similar, the magnitudes for the potential
vorticity is significantly different. Additionally, it should be noted that both of these cases had
the same initial conditions. The result from the simulations using the shallow water model
(left) and the quasigeostrophic approximation model (right) is shown below as Figure 5.2. In
both of these cases, the plots are the same as the potential vorticity shown analytically (Figures
5.1 and 5.2).Therefore, for u(y) dependence and v = 0, it appears that the code is implemented
correctly.

In the second case, the u dependence is 0 and the v velocity is defined as v = cos(2πx
lx

).
Here, the corresponding height in the shallow water equations is defined to be:
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Figure 5.2: Potential vorticity using the shallow water model (left) and from the quasi-
geostrophic approximation (right) using simulations

h(x,y) = hmean +
lx
2π

sin(
2πx
lx

) (5.20)

The corresponding analytic potential vorticity results for the shallow water equations (5.21)
and the quasigeostrophic approximation (5.22) are:

q(x,y) =
1

hmean + lx
2π

sin(2πx
lx

)
(−sin(

2πx
lx

)+ fcor) (5.21)

q(x,y) =
2π

lx
sin(

2πx
lx

)− 1
Bu

lx
2π

sin(
2πx
lx

) (5.22)

Figure 5.3 shows the resulting plot obtained from the potential vorticity using the shallow
water via (5.21) (left) and the quasigeostrophic approximation using (5.22) (right). In this
scenario, since the potential vorticity only has an x dependence, it appears that the plot is
consistent to the expected result.

To compare, the velocity conditions are implemented in the simulation code case 2 and
figure 5.4 is the resulting potential vorticity plots for the shallow water model (left) and quasi-
geostrophic approximation (right), respectively. As it can be seen, the analytic and simulation
results for the potential vorticity look qualitatively the same and qualitatively the result for the
shallow water equations and the quasigeostrophic approximation are the same as in case 1.

For the third case, both of the velocity components are nonzero. This case is generally
similar to the initial conditions which would be of interest to simulate for the purposes of this
report and further analysis. The conditions considered are u(y) = cos(2πy

ly
) and v(x) = cos(2πx

lx
).

For this scenario, the height can be expressed as follows:

h(x,y) = hmean +(−
ly
2π

sin(
2πy
ly

)+
lx
2π

sin(
2πx
lx

))
fcor

g
(5.23)
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Figure 5.3: Analytic potential vorticity using the shallow water equations using (5.21) (left)
and the quasigeostrophic approximation using (5.22) (right)

Figure 5.4: Potential vorticity results from the shallow water equations (left) and quasi-
geostrophic approximation (right) using the simulation
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Figure 5.5: Potential vorticity using the shallow water model (left) using (5.24) and the quasi-
geostrophic approximation (right) using the sum of (5.19) and (5.22)

Using this equation, the corresponding potential vorticity for the shallow water equations
was:

q(x,y) =
1

hmean +(− ly
2π

sin(2πy
ly

)+ lx
2π

sin(2πx
lx

)) fcor
g

(
−2π

lx
sin(

2πx
lx

)+
2π

ly
sin(

2πy
ly

)+ fcor)

(5.24)
The potential vorticity for the quasigeostrophic approximation was the sum of (5.19) and

(5.22). The analytical potential vorticities are plotted as Figure 5.5 for the shallow water model
(left) and the quasigeostrophic approximation (right), respectively.

To compare, the results from the simulations is shown as Figure ??. Once again, the plots
are the same as that obtained analytically and therefore, while the magnitudes cannot be com-
pared without algebraically manipulating the results to make a comparison, qualitative com-
parisons between the potential vorticities of the shallow water model and the quasigeostrophic
approximation is possible. Therefore, comparisons between the potential vorticities of the
shallow water model and the quasigeostrophic approximation give a preliminary, visual under-
standing of the results and the evolution over time. A stronger comparison would be through
comparing energies or enstrophies. Thus, while this report does show results of potential vor-
ticity, this should be observed qualitatively. Quantitative analysis is done using the energy.
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Figure 5.6: Potential vorticity using the shallow water model (left) and quasigeostrophic ap-
proximation (right) using simulation
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Linear Results
This subsection discusses an investigation of the linearized shallow water equations and com-
pares the same initial conditions run using both a linear and fully non-linear version of the
code. This avenue of exploration was abandoded over the summer in favor of a suite of fully
nonlinear simulations. Mainly due to time constraints, but also for other reasons discussed later
in this section. It does represent a substantial amount of work put forth and is a goal for future
work, so is included in this report.

In a linear stability analysis, we attempt to identify the fastest growing modes in the system.

Mathematical Treatment

We begin with the inviscid shallow water equations in the form, see [82],

~ut +(~u ·∇)~u =−g∇h+~u× f ẑ (5.25)

ht +(~u ·∇)h = 0 (5.26)

Where ~u = (u,v) is the horizontal velocity field, u,v are the velocities in the x and y direc-
tions respectively, ∇ = (∂x,∂y), h is the height above the bottom surface, and f = 2Ωsin(φ) is
the Coriolis parameter, chosen here to be a constant.

In order to linearize the equations we assume that any quantity of interest can be written
in the form q = q+q′ where q represents an equilibrium, not necessarily static, solution to the
shallow water equations, and q′ is a small perturbation from equilibrium, q′� q. Substituting
into equations (5.25) and (5.26) and writing in component form we arrive at,

(ut +u′t)+
[
(u+u′)∂x +(v+ v′)∂y

]
(u+u′) =−g∂x(h+h′)+(v+ v′) f (5.27)

(vt + v′t)+
[
(u+u′)∂x +(v+ v′)∂y

]
(v+ v′) =−g∂x(h+h′)− (u+u′) f (5.28)

(ht +h′t)+
[
(u+u′)∂x +(v+ v′)∂y

]
(h+h′) = 0 (5.29)

where a subscript denotes a partial derivative with respect to that variable, qi = ∂q
∂xi

.
Expanding and dropping terms of second order, q′q′ ≈ 0, we obtain,

ut +(u∂x + v∂y)u+g∂xh− v f +u′t +(u∂x + v∂y)u′+(u′∂x + v′∂y)u =−g∂xh′+ v′ f (5.30)

vt +(u∂x + v∂y)v+g∂xh+u f + v′t +
(
u′∂x + v∂y

)
v′ =−g∂yh′−u′ f (5.31)

ht +(u∂x + v∂y)h+h′t +∂x(h′u+hu′)+∂y(h′v+hv′) = 0 (5.32)

Further note that the left most terms, those containing no primed quantities, by assumption
satisfy the original system of equations (5.25) and (5.26) and are therefore equal to zero. Our
linearized system of equations may then be written,

Final Reports: 2016 Computational Physics Student Summer Workshop Page 34



Interaction Between Waves and Vortices

u′t +(u∂x + v∂y)u′+(u′∂x + v′∂y)u =−g∂xh′+ v′ f (5.33)

v′t +
(
u′∂x + v∂y

)
v′ =−g∂yh′−u′ f (5.34)

h′t +∂x(h′u+hu′)+∂y(h′v+hv′) = 0 (5.35)

Again expanding and gathering like terms, we may write these as,

(∂t +u∂x + v∂y +∂xu)u′+(∂yu− f )v′+g∂xh′ = 0 (5.36)

(∂yv+ f )u′+(∂t +u∂x + v∂y +∂yv)v′+g∂yh′ = 0 (5.37)

(h∂x +∂xh)u′+(h∂y +∂yh)v′+(∂t +u∂x + v∂y +∂xu+∂yv)h′ = 0 (5.38)

Equations (5.36)-(5.38) represent the linearized system of shallow water equations. They
are a system of coupled partial differential equations with non-constant coefficients. While
some progress was made at deriving a dispersion relation of this system, by converting them
into a system of ordinary differential equations, this proved more complicated than originally
anticipated. In addition, the assumptions necessary to do so would have limited the number
of useful comparisons to nonlinear work. For complete generality, a numerical analysis of the
above system will be much more useful. Using a difference scheme for any partial derivatives
in equations (5.36)-(5.38) results in a sparse matrix. There are many solvers in existence for
solving such a system, such as LINPACK.

Computational Treatment

Here we describe the simulations that were to accompany the mathematical treatment in the
previous section. We used a simple piecewise defined velocity field for which the analytic
solution could be found.

ub(y) =


−u0 0 ≤ y ≤ l/2
2u0

d (y− l/2) l/2 ≤ y ≤ l/2+d
u0 l/2+d ≤ y ≤ 3l/2+d
−2u0

d (y−d−3l/2)+u0 3l/2+d ≤ y ≤ 3l/2+2d
−u0 3l/2+2d ≤ y ≤ 2l +2d = L

Where ub is the velocity in the x direction, the computational domain is L× L in the x
and y directions and L = 2l +2d. We use periodic boundary conditions and so have identified
x = 0 = L and y = 0 = L. See Figure 5.7.

Assuming that the background state is in geostrophic balance, we may also define the height
as,

−g
f

hb(y) =


−u0y+C1 0 ≤ y ≤ l/2
u0
d (y2− ly)−u0y+C2 l/2 ≤ y ≤ l/2+d
u0y+C3 l/2+d ≤ y ≤ 3l/2+d
−u0

d (y2−2(d + 3
2 l)y)+u0y+C4 3l/2+d ≤ y ≤ 3l/2+2d

−u0y+C5 3l/2+2d ≤ y ≤ 2l +2d = L

Final Reports: 2016 Computational Physics Student Summer Workshop Page 35



Interaction Between Waves and Vortices

Figure 5.7: Initial configuration of the velocity field. Simulations were performed with differ-
ent values of d, which fixes the value of l.

where the Ci’s are chosen to match Hmean and ensure that hb(y) is continuous.

g f Hmean Ro Fr Bu Ld L
.002 .0001 4000 .00046 .0021 .0488 2.82e4 1.28e5

Table 1: Initial conditions for the piecewise defined velocity simulations

Table 1 summarizes the initial conditions for the simulations discussed below. We per-
formed simulations using both the linearized shallow water and fully nonlinear shallow water
versions of the code.

We used values of d ranging from L
4 to L

32 , all of the figures refer to models run with a grid
resolution of nx = ny = 128.

In order to seed instability, a random perturbation is added to the velocity over the regions
d. In order to confirm that the initial conditions were in geostrophic balance we performed
a simulation without a random perturbation added. The simulation was evolved for ≈ 4.3TE ,
where TE = L

U is the large eddy turnover time, and no growth was seen.

Simulation Data

Linearized Shallow Water

Figures 5.10 and 5.11 show the evolution of the system energy in spectral space. One of the
reasons this particular initial condition was abandoded is the amount of energy present at high
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Figure 5.8: Shallow water height perturbation at t = 0 (top left) and t = 4.3TE (top right).
Potential vorticity perturbation at t = 0 (bottom left) and t = 4.3TE (bottom right). For the
piecewise defined simulation with d = L

8 .

wavenumbers. In order to investigate forward cascade of energy, initial conditions with the
majority of energy in low wavenumbers was desirable, see for instance 5.15 for comparison.

Shallow Water Equations

Figure 5.13 shows the potential vorticity for the piecewise defined velocity initial conditions,
evolved with the fully nonlinear version of the shallow water equations. Comparing with figure
5.9, which shows the same initial conditions evolved with the linear shallow water equations,
we see that vortices have developed in this instance. This is a purely nonlinear effect.
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Figure 5.9: Linearized shallow water height perturbation at t = 0 (top left) and t = 0.69TE (top
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the piecewise defined simulation with d = L

32 .
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Figure 5.10: Evolution of the kinetic energy in spectral space. For the piecewise defined simu-
lation with d = L

8 model.
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Figure 5.11: Evolution of the potential energy in spectral space. For the piecewise defined
simulation with d = L

8 model.
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Figure 5.12: Maximum height (red curve) for linear shallow water simulation with d = L
8 (left)

and with d = L
32 (right). The blue curve is the fit to the data giving e-folding times of 2.3TE

and 12.3TE for thed = L
8 and d = L

32 simulations respectively.
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and t = 0.60TE . For the piecewise defined simulation with for the d = L

32 model.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 41



Interaction Between Waves and Vortices

Nonlinear Results
In this section we present analysis and comparison of low resolution simulations performed
using both the shallow water and quasigeostrophic models.

Initial Conditions

As mentioned before, several of the initial conditions investigated early in the summer con-
tained too much energy at high wavenumber, see Fig 5.10, to be of interest in investigating
forward energy cascade. The initial potential vorticity, equation (5.39), was given as a back-
ground geostrophic flow (first term in parentheses) and a small ageostrophic flow (second term
in parentheses). In order to seed instability, the ageostrophic term is then seeded with a small
amplitude random perturbation, with wavenumbers ranging from k = 6 to 42. Figure 5.14
shows the initial configuration for the QG model and SW model with varying Rossby number.

q = (sin(y)+ sin(2y))+0.1(sin(5x)+ sin(x)) (5.39)

Figures 5.15 and 5.16 show a representative example of the spectral energies. We see that
most of the energy is in k = 1,2 and 5, as expected from the form of the initial potential
vorticity, equation 5.39. As the models evolved and energy cascaded to smaller length scales,
dissipation occurred. The models were evolved until the dissipation in total energy became
negligible. See Figure 5.24. At this time the simulations had reached a balanced state, seen in
Figure 5.19, in which a dipole had formed. All of the simulations ultimately ended in a similar
state, one with a dipole potential vorticity configuration. The relative strength of cyclonic and
anticyclonic vortices did not maintain the same symmetry as in the QG model. In the next
section we note differences in the intermediate and final stages, and attempt to quantify these
differences.
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Figure 5.14: Initial potential vorticity for the QG model (top left), and shallow water model at
Ro=.05 (top right), Ro=.1 (center left), Ro=.25 (center right), Ro=.5 (bottom left) and Ro=1.0
(bottom right)
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Figure 5.15: Evolution of spectral energies for shallow water models with Ro=.05 (top), and
Ro=.25 (bottom)
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Figure 5.16: Evolution of spectral energies for shallow water models with Ro=0.5 (top), and
Ro=1.0 (bottom)
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Figure 5.17: Potential vorticity for times corresponding to maximum energy dissipation, t =
10TE for QG (left) and t = 10.7TE for the shallow water model (right) with Ro=.05.

Evolution

We see in figures 5.17 and 5.18 that there is a lot of small scale structure in the system. The
simulations are shown at the time of maximum energy dissipation, see also figure 5.24. This is
consistent with the form of the dissipation operator used.

Comparing figures 5.17 and 5.19 we see that most of the small scale structure has been
smoothed out in the QG model, while some small scale structure remains in the shallow water
simulations. The dipoles appear to be similar in shape, somewhat egg like, for the QG model
and small Rossby number shallow water simulations. Although as noted there is more structure
within the vortices for the shallow water. For increasing Rossby number they are becoming
more circularly symmetric. They are all of roughly the same size.
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Figure 5.18: Potential vorticity for times corresponding to maximum energy dissipation, t =
10.7TE , for the shallow water model with Ro=.1 (top left), Ro=.25 (top right), Ro=.5 (bottom
left) and Ro=1.0 (bottom right)
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Figure 5.19: Potential vorticity for late times, t = 71.4TE , for the QG model (top left), and
shallow water model at Ro=.05 (top right), Ro=.1 (center left), Ro=.25 (center right), Ro=.5
(bottom left) and Ro=1.0 (bottom right)

Figure 5.20 shows the exchange in total kinetic and total potential energies over time. Note
that for low Rossby number there is little difference between the shallow water and quasi-
geostrophic models. For moderately large Rossby numbers (.25 and .5) we begin to see changes
at early times in the amount of energy exchanges, and for a Rossby number of 1.0, there is a
significant difference in both the amount of energy exchanged, and the form of the curves at
late times. In particular the exchange of energy is a substantial portion of the total energy and,
unlike the low Rossby number simulations, continues to oscillate between potential and kinetic
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energies, characteristic of waves.
To investigate this further we plot the amount of total ageostrophic energy in the system for

different Rossby numbers in figure 5.21. And the amount of potential and kinetic ageostrophic
energy in figure 5.23. Ageostrophic energy here is the difference between the total energy
of the system and the amount of energy in geostrophic states. A negative potential energy
occurs because the the potential energy in geostrophic modes increases as the system evolves.
The total ageostrophic energy is the sum of kinetic and potential energies, and is positive as
expected.

The amount of ageostrophic total energy in the system increased as the Rossby number was
increased. Figure 5.22 shows mean values for the energies seen in figure 5.21 as a function of
Rossby number as blue squares. The red curve is a fit the data, the functional form of the fit
was f (Ro) = (0.01540± .00005)Ro2.11±.01.

In Figure 5.24 the dissipation rate for the different simulations is shown. The maximum
dissipation rate occurs at roughly the same time for each, this indicates that the process respon-
sible for energy dissipation is not dependent on Rossby number.

Figure 5.25 shows in a crude fashion that forward cascade processes increase as one begins
to probe scales smaller than the deformation radius—the submesoscales. At the beginning of
the project the plan was to conduct high resolution numerical experiments that resolve both
the mesoscales and submesoscales simultaneously. However, the allocated computational re-
sources did not permit this. So a sequence of simulations were conducted (at low resolution)
but progressively smaller scales. It is important to note that this latter series of simulations
do not allow the full range of interactions across a wide range of scales, as would be real-
ized in the high resolution simulations that were planned originally. Nevertheless, it highlights
the premise of the project that processes that permit a forward cascade of energy become in-
creasingly important as one begins to resolve scales smaller than the deformation radius—the
submesoscales.
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Figure 5.20: Kinetic and potential energies for the QG model (top left), and shallow water
model at Ro=.05 (top right), Ro=.1 (center left), Ro=.25 (center right), Ro=.5 (bottom left) and
Ro=1.0 (bottom right)
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Figure 5.21: Total ageostrophic energy in the system as a function of time. We see an increase
as the Rossby number is increased. See also figure 5.22.
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Figure 5.22: Ageostrophic total energy in the system at the end of the simulation for different
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Figure 5.23: Ageostrophic kinetic (left) and potential(energies) for the different simulations.
The energies have been normalized by the amount of total initial energy and TE is the large
eddy turnover time.
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Figure 5.24: Normalized energy dissipation rate for different Rossby numbers with a Burger
number of 1.
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Figure 5.25: Normalized energy dissipation rate for Ro=0.1 and varying Burger numbers .
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Future Work
With regard to future work, there are several directions that the project can go in, in order to
further explore and better model the interaction of waves and vortices. Generally, the primary
suggested directions are: (1) modifying initial conditions; (2) extensions of the current energy
analysis in higher resolutions; and (3) considerations to linearized forms of the shallow wa-
ter and quasigeostrophic approximations and instability analysis. The subsections to follow
consider each of these points and elaborate in greater detail.

(1) Modifying Initial Conditions

The initial conditions considered herein have considered initial conditions which are periodic
and mainly trigonometric functions, particularly simple sines and cosines with small pertur-
bations or piece wise functions. However, other piece wise functions or forms of the trigono-
metric functions could be considered instead as initial conditions for velocities or potential
vorticities. Additionally, different input parameters would also affect the the resulting behavior
for potential vorticity and energy as well (varying Rossby numbers show different effects of the
inertial-gravity wave). For these varying initial conditions, comparisons can be made between
quasigeostrophic approximation and shallow water equations as well, as was attempted in this
report.

(2) Extensions of the Current Analysis in High Resolutions

The energy and potential vorticity analysis done in this report has predominately been done
for rather low resolution (128 by 128). Higher resolutions (512 by 512) were briefly explored,
but not shown in the report as the simulations did not complete in time. This was one of the
goals this summer and was attempted to be done, but the simulations did not finish by the
end of the summer with the current computational resources available. Thus, this would be
a recommendation for future extensions of this project. This analysis can be compared with
the lower resolution results documented in this report and the effect of the different scales
could be further explored. However, it is strongly recommended that better and more available
computational resources be used to perform these simulations for timely completion.

(3) Considerations to Linearized Forms of the Shallow Water and QG Approximation

In this report, the linearized forms of the shallow water equations was briefly considered to
understand the effect of the perturbation and attempted to perform some preliminary instabil-
ity analysis of the piecewise initial conditions. However, the linearized forms of the quasi-
geostrophic approximation could also be considered and analyzed as well. Different kinds of
initial conditions could also be considered and the results could be compared with varying res-
olutions and an energy analysis could also be done and analyzed further. Therefore, utiling the
linearized shallow and quasigeostrophic approximations would be an addition to the current
computational capabilities of the spectral codes.
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Abstract

Pressure, free energy, self- and mutual- diffusion coefficients are calculated for CH
plasma mixtures at temperatures of 10-100eV and densities of 4.5-10 g/cc. An orbital-
free molecular dynamics (OFMD) code is used which has been shown to agree well with
quantum molecular dynamics (QMD) codes for plasmas in the warm dense matter (WDM)
regime. The OFMD code treats electrons quantum mechanically and nuclei classically due
to strong electron degeneracy and Coulomb coupling. This work has applications in the
interiors of exoplanets, the atmospheres of stars, and inertial confinement fusion.
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Introduction

Background

The warm dense matter (WDM) regime ranges in plasma temperatures from approximately
1eV to hundreds of eV and from about 0.1 g/cc to the order of tens of g/cc in density [45].
Historically, the WDM regime has presented a significant modeling challenge due to the com-
putational expense of quantum mechanical methods such as density functional theory (DFT)
and the relative inaccuracy of classical approximations [49]. There are two parameters which
feature prominently in addressing the challenges of modeling this regime: the Coulomb cou-
pling parameter and the degeneracy parameter.

The coulomb coupling parameter is a value which describes the ratio of average potential
energy to average kinetic energy of the particles in a system. When the coulomb coupling
parameter is much less than unity, particles move through the system quickly and are unob-
structed by significant interparticle interactions. The reverse is true at higher densities and
lower temperatures: the coulomb coupling parameter can become very large, obstructing dif-
fusion with strong interparticle interactions. This condition is referred to as ”strong coupling”
[49]. The coulomb coupling parameter is represented in Equation 6.1.

Γ =
〈Epotential〉
〈Ekin〉

(6.1)

The second important quantity used to characterize plasmas in the warm dense regime is
the degeneracy parameter. The degeneracy parameter is used to determine whether a system
should be treated classically or quantum mechanically. When the degeneracy parameter is
much greater than unity, the system is non-degenerate and a classical approach can adequately
describe it. At a degeneracy parameter value of much less than unity, the system is called ”de-
generate” and a quantum mechanical approach must be taken. This is due to an increased ratio
of the thermal deBroglie wavelength to the average interparticle distance, or alternately the ra-
tio of thermal energy to Fermi energy. Degeneracy occurs at high densities where the average
interparticle distance is decreased and at low temperatures where the thermal deBroglie wave-
length of the electrons is extended [49]. This concept is demonstrated in Figure 6.1 where ∆x
is the average interparticle distance and d is proportional to the thermal deBroglie wavelength.

Both the coulomb coupling parameter and the degeneracy parameter are critical to charac-
terizing plasmas and predicting their behavior. The warm dense matter regime has even been
defined as the region where these two parameters are approximately equal to unity [49]. Be-
cause the modeling of this intermediate region falls neither in the realm of condensed-matter
physics nor in traditional plasma physics, it has led to the development of novel new approaches
which combine the application of density functional theory with Born-Oppenheimer molecular
dynamics. The development of experimental and computational methods tailored to the study
of the WDM regime have a variety of technical applications which are outlined below.

Applications

As Figure 6.2 illustrates, warm dense matter conditions can be found in both astrophysical
and controlled fusion environments. Astrophysical areas of interest include the interiors of
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Figure 6.1: Relationship Between Coulomb Coupling Parameter, Temperature, and Density
[49]

Figure 6.2: Overview of the Warm Dense Matter Regime [49]
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white dwarfs, brown dwarfs, and neutron stars as well as the atmospheres of solar planets and
exo-planets [49].

WDM plasmas are also directly relevant to the development of nuclear fusion technology.
While magnetic confinement fusion requires densities lower than those of the WDM regime,
inertial confinement fusion has been shown to yield plasmas that fall within this range of condi-
tions [45]. Inertial confinement fusion is commonly performed by subjecting deuterium-tritium
fuel and a carbon-hydrogen ablator to laser-induced heating and compression. However, an-
other method exists which is referred to as pulsed-power-driven inertial fusion. This method
utilizes an electric current to magnetically implode the cold deuterium-tritium gas fuel pellet
[11, 49]. Elements such as uranium, plutonium, aluminum, and lithium hydride have also been
studied under WDM regime conditions [46, 47, 15, 74]. Significant benefits of these types
of computational studies often lie in the expense and hazardous nature of the materials being
studied. For example, the liquid phase of plutonium has been studied only minimally due to its
extremely corrosive and radioactive properties. Characterizing the behavior of plutonum in the
WDM regime has applications from powering deep-spacecraft to developing closed fuel cycles
for fast nuclear reactors. Due to relatively recent developments such as the orbital-free molec-
ular dynamics technique, optical transport properties such as the viscosity and self-diffusion
coefficients have been calculated for plutonium in the WDM regime [47].

The rapid expansion of computational power during the past several decades has con-
tributed greatly to opening up the exploration of the warm dense matter regime. In addition,
several novel methods of obtaining experimental data for strongly coupled WDM plasmas have
been developed. Strongly coupled laboratory plasmas can be studied in the form of “dusty,” ul-
tracold, noneutral, and sonoluminescent plasmas. Each of these methods provides the capabil-
ity to more thoroughly validate computational methods and predict the behavior of hazardous
materials under extreme conditions [49].

Methodology

Simulation

Plasma transport properties such as diffusion and viscosity have been calculated using a va-
riety of methods. These include a classical approach adapted with Yukawa potentials, a fully
quantum treatment referred to as QMD, and the semi-classical OFMD technique. The least
computationally expensive of the three, the one-component plasma (OCP) method takes a fully
classical approach. OCP generally uses an average-atom prescription and linearized Thomas-
Fermi scheme to model the system as a set of point ions which interact via Coulomb potentials
with neutralizing electrons. While the OCP method is developed on the assumption of full ion-
ization, it can be extended to partially ionized systems by adjusting the charge or implementing
an effective charge in place of Z. To this end, the Coulomb potential can be replaced with the
screened or ”Yukawa” form [46].

The semi-classical orbital-free molecular dynamics (OFMD) calculations employ an orbital-
free density-functional formation with a Thomas-Fermi-Dirac restriction. This indicates that
the free energy is approximated as a function of electron density throughout the system rather
than calculated for each individual particle as it is in the QMD approach. Plane waves are used
to represent the local electronic density and must be adjusted to achieve convergence [47],
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Figure 6.3: Comparison of QMD, OFMD, and OCP mutual diffusion coefficient calculations
for D-T mixture under 10eV [47]

while the Born-Oppenheimer approximation is used to separate electronic and nuclear mo-
tions. OFMD is able to simulate higher temperature ranges than QMD due to its semiclassical
approach and reduced computational demands [45, 47].

Quantum molecular dynamics (QMD) implements the fully quantum mechanical treatment
of electrons with the use of Kohn-Sham finite-temperature density-functional theory (FTDFT).
The assumption of local thermal equilibrium (LTE) between electrons and ions is used to fix
ion and electron temperatures at a constant value throughout the simulation. Interactions be-
tween electrons and ions are modeled with a projector-augmented wave pseudopotential. Ion
trajectories are progressed according to Newtonian forces via the velocity Verlet algorithm
[47]. Unlike OFMD, QMD distinguishes between bound and free electrons in its calculations.
Both OFMD and QMD treat the nuclei classically [45, 47].

Agreement between QMD and OFMD has been studied under a wide range of temperatures
and densities for materials such as hydrogen, iron, lithium hydride, gold, plutonium, uranium,
deuterium-tritium mixtures, and aluminum [47, 45, 74, 85]. These have demonstrated that
for the calculation of optical transport properties, OFMD generally shows good agreement
with QMD results in the WDM regime [45]. The OFMD method was implemented for our
calculations in order to allow the simulation of binary and ternary mixtures at temperatures up
to 100eV. Figure 6.3 below displays a comparison of OFMD, QMD and OCP for a deuterium-
tritium mixture in the warm dense matter regime.

Diffusion Coefficient Derivation and Pressure Calculations

A major objective of this study is the verification of the Darken approximation against the more
computationally demanding Maxwell-Stefan formulation as a method of deriving mutual diffu-
sion coefficients from OFMD simulations. The Maxwell-Stefan formulation derives diffusion
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coefficients directly from the particle trajectories yielded by the simulation. The formulation
is driven by a chemical potential gradient and balanced by frictional force, calculating Fickian
coefficients via thermodynamic transformation. The Maxwell-Stefan formulation is also easily
transferable to other reference frames through a simple change in the reference velocity or by
matrix multiplication [21]. It is displayed in Equation 6.2 where R represents the gas constant,
T is temperature, µi is the chemical potential, and ui and u j are the velocities of components
i and j respectively. Di j represents the diffusion coefficient, which acts as an inverse friction
coefficient [21].

− 1
RT

∇µi = ∑
i6= j

x j(ui−u j)
Di j

(6.2)

However, because the mutual diffusion coefficient depends upon the entire system for each
calculation, it requires a very large number of time-steps to achieve statistical accuracy. Self-
diffusion coefficients are calculated from single-particle trajectories by the velocity autocorre-
lation function and can therefore gain much higher statistical accuracy at much lower compu-
tational expense by averaging over the entire system [45]. The Darken approximation attempts
to address this disparity by deriving mutual diffusion coefficients from the molar fractions and
self-diffusion coefficients of the elements within the plasma mixture. The Darken approxima-
tion for a binary system is shown in Equation 6.3 where DCH is the mutual diffusion coefficient,
DC and DH are the self-diffusion coefficients, and xC and xH are the molar fractions of the re-
spective elements.

DCH = xHDC + xCDH (6.3)

Pressure is calculated by averaging the electronic pressure over the trajectory after system
equilibrium has been achieved and summing this with the ideal gas pressure of the ions (Fig-
ure 6.4) [45]. Initial electronic and ionic pressures are set to be equal using density adjustments
as shown in Table 2. These density values are constrained to the volume matching requirements
of Equation 6.4, which is applicable to a binary system and equivalently stated in Equation 6.5
where mi represents the mass number of element i, ni represents number of atoms of element
i, and ρi represents the density. ρCH is the total density of the system.

VCH = VC +VH (6.4)

mHnH +mCnC

ρCH
=

mHnH

ρH
+

mCnC

ρC
(6.5)

Convergence Studies

Three parameters are evaluated throughout the calculation process in order to ultimately en-
sure convergence of the optical transport properties. The number of plane waves, the velocity
autocorrelation functions, and the the limit of the thermodynamic properties yielded by vary-
ing numbers of atoms must be analyzed. It is important to note that the OFMD method treats
bound and ionized electrons identically when calculating free energy. Therefore, the cutoff
radius is designated 30% of the Wigner-Seitz radius value in order to prevent regularization
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Figure 6.4: The upper plot shows the equilibriation period in gray. The lower plot shows the
data used for the average and standard deviation without the equilibriation period.

CH Mixture 10 g/cc
Temperature (eV) ρCarbon (g/cc) ρHydrogen (g/cc)

10.0 11.740 3.5990
25.0 11.670 3.6800
50.0 11.545 3.8375
75.0 11.435 3.9906
100.0 11.340 4.1360

CH Mixture 4.5 g/cc
Temperature (eV) ρCarbon (g/cc) ρHydrogen (g/cc)

10.0 5.97 1.138
25.0 5.34 1.558
50.0 5.24 1.670
75.0 5.16 1.775
100.0 5.10 1.866

Table 2: Densities Used to Match Electronic Pressures of C and H
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spheres from overlapping. The number of plane waves must then be adjusted in order to min-
imize the error in free energy [47]. Prior to full simulations being run, a single time-step is
calculated with the given set of input parameters for varying numbers of plane waves. Because
these plane waves are used in OFMD to describe local electron density, convergence can only
be achieved if the number of plane waves approximates the value which minimizes the error in
free energy. The error in free energy is determined by comparing the free energy calculated at a
very large number of plane waves to those calculated with fewer. An example plot of the error
in free energy vs. the number of plane waves in a simulation is shown in Figure 6.5, where the
converged number of plane waves is 128.

The integrals of velocity autocorrelation functions are also evaluated in order to determine
convergence of the mutual diffusion. The time interval used for diffusion calculations is de-
pendent on the folding time of the velocity autocorrelation function, the integral of which can
be fitted to determine its convergence to a limit. Lastly, simulations with varying numbers of
atoms between approximately 50 and 200 are compared to ensure that the size of the system is
adequate to provide statistical accuracy. Converged examples are shown in Figure 6.5.
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Figure 6.5: The upper left plot shows how the number of plane waves reach a minimum error
in free energy. The upper right plot shows the integral of the autocorrelation function (ACF),
our fit, and the limit of our fit. The bottom plot shows how the mutual diffusion behaves with
respect to simulation length and atoms.
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Error Calculations

The fractional statistical error of a molecular dynamics trajectory correlation function C is
displayed in Equation 6.6 where τ is the e-folding time of the velocity autocorrelation function
and Ttra j is the time length of the particle trajectories.

∆C
C

=

√
2τ

Ttra j
(6.6)

Note that this equation is valid only for properties such as viscosity and mutual diffusion co-
efficients which are determined from the trajectories of the entire system. Error in self-diffusion
coefficients are determined from single-particle correlations and obtain greater statistical ac-
curacy per time step, gaining a 1√

N
reduction in error such that published results generally

fall below 10% in mutual diffusion error and below 1% for self-diffusion [45, 47]. The error
bars in the plots below represent standard deviation rather than the fractional statistical error.
Mutual diffusion coefficient calculations of the Darken approximation and the Maxwell-Stefan
formulation are also compared.

Results

CH Mixtures

For the CH Mixture calculation, we used a 50% Carbon and 50% Hydrogen mixture for the
various atom counts. The calculated pressures, self-, and mutual- diffusion coefficients are
shown in Figure 6.6. All shown errors for pressure, self-diffusion, and mutual- diffusion are
below 2%, 3%, 16% respectively.

Since self-diffusion calculations are much less computationally expensive than mutual-
diffusion calculations, we looked at the accuracy of the Darken aproximation (Equation 6.3).
The resulting mutual diffusion coefficients are within 16% of the Maxwell-Stefan formulation
that utilizes the partical trajectories from the OFMD calculation.
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Figure 6.6: Results of the various CH Mixture calculations are shown. The 10 g/cc calcula-
tions are represented by dotted lines, and the 4.5 g/cc simulations are shown in solid lines.
The Darken approximation is represented by triangles (10 g/cc) and stars (4.5g/cc). Self- and
Mutual-Diffusion coefficients’ error bars are statistical, and Pressure error bars are the standard
deviation of the simulation.

Conclusion
For a carbon-hydrogen mixture of a 1:1 molar ratio between 10 and 100eV and under 10 g/cc
in density, it appears that the Darken approximation can reliably be used to obtain mutual
diffusion coefficients within 16% accuracy of the Maxwell-Stefan predictions. Pressure, as
expected, is higher and has a stronger correlation with temperature for mixtures of higher
density, while both self- and mutual- diffusion coefficients decrease with density. Pressure
and all diffusion coefficients increase with temperature across the measured range to reach a
maximum at 100eV.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 66



Mixtures in Warm Dense Matter

Future Work
Future work will involve extending a greater temperature and density range of CH mixture
simulations to convergence as well as simulating different molar fractions for CH mixtures.
Different temperature and densities in the WDM regime will be explored for ternary mixtures
such as C/Li/D and Al/Li/D. Studies may also be carried out with heavier elements such as Ag.
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Abstract

Isolated-atom and average-atom are two approaches for modeling optical properties
of warm dense plasmas. The average-atom model includes density- and temperature-
dependent wavefunctions but has crude atomic physics, whereas the isolated-atom ap-
proach taken in the LANL ATOMIC code goes into great detail with respect to the atomic
physics, with plasma effects included as corrections. We carried out a systematic compar-
ison of these two methods. Considerable differences were found at low photon frequency
due to the different treatment of free-free transitions. We determined that implementing
the conductivity sum rule in ATOMIC greatly increases its agreement with both average-
atom and quantum molecular dynamics results at low photon frequencies. We also found
that ATOMIC gives better bound-free edge energies for deeply bound states due to errors
in the density-functional treatment of electrons in the average-atom model. Other model
differences include the location of bound features, implementation of screening potential,
and treatment of inter-ionic structure. Despite these, we have shown that the average-atom
and ATOMIC calculations can be made to give qualitatively similar predictions for the
optical properties of warm dense plasmas.
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Introduction
The interaction of plasma and radiation depends on radiative transport coefficients such as the
absoprtion coefficient and index of refraction. The optical properties of the plasma can be un-
derstood as the sum of contributions due to inverse bremsstrahlung (free-free), photoionization
(bound-free), photo-excitation (bound-bound), and Thomson scattering. These properties are
of considerable interest when diagnosing and simulating warm dense plasmas. Warm dense
plasmas lie between solid state and classical plasmas. Their electrons are partially degener-
ate and behave quantum-mechanically, while their ions can be strongly coupled, making the
plasma difficult to model accurately. Isolated-atom and average-atom are two approaches for
modeling optical properties of warm dense plasmas. The average-atom model has density- and
temperature-dependent wavefunctions but less detailed atomic physics, whereas the LANL iso-
lated atom code, ATOMIC, includes detailed atomic structure information, but plasma effects
are included afterwards. An important quantity for radiation transport and equations of state
when simulating the interaction of radiation with warm dense matter is the opacity: a measure
of how much radiation is absorbed by the plasma. We compared the the frequency-resolved
opacity and the Rosseland mean opacity along with other optical properties in order to highlight
the strengths and weaknesses of each model respectively.

Methods
Despite differing physical approaches, the isolated atom and the average atom models contain
similarities. Both invoke the Born-Oppenheimer approximation, a decoupling of the wavefunc-
tions due to large differences in time scale between the motion of electrons and nuclei in the
plasma. It is further assumed also that the radiation couples only to the electrons. The plasma
and the radiation are assumed to be in local thermodynamic equilibrium at a temperature T , so
the continuum electron energies, ε , obey Fermi-Dirac statistics with the distribution function,

f (ε) =
1

1+ e(ε−µ)/kT
, (7.1)

and the photon energies, h̄ω , are Planck-distributed:

B(ω,T ) =
15
π4

(h̄ω/kT )3

eh̄ω/kT −1
. (7.2)

In both models, the free-free transition probabilities are computed in the dipole (low in-
tensity) approximation. Within the dipole approximation, the coupling of the radiation to the
electrons can be treated equivalently in the velocity gauge or in the so-called “acceleration” or
length gauge. The average-atom calculations here use the velocity gauge, while the ATOMIC
calculations use the acceleration gauge.

In thermally averaging over the electrons, each model appears to use a different weighting
scheme. In the average-atom calulation, the weighting function is the difference between the
Fermi occupation of the initial and final states:

WAA = f (ε)− f (ε + h̄ω) . (7.3)
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In ATOMIC, the weighing function is the joint probability of occupation of the initial state and
non-occupation of the excited state, with an additional “stimulated emission” factor:

WATOMIC = f (ε) [1− f (ε + h̄ω)]×
(

1− e−h̄ω/kT
)

. (7.4)

However, these two are in fact the same, since (in abbreviated notation, (ε − µ)/kT → ε ,
h̄ω/kT → ω)

WAA =
1

1+ eε
− 1

1+ eε+ω
(7.5)

=
1− e−ω

1+ eε

eε+ω − eε(
1+ e−ω

)(
1+ eε+ω

) (7.6)

=
1− e−ω

1+ eε

eε+ω

1+ eε+ω
(7.7)

=
1− e−ω

1+ eε

(
1− 1

1+ eε+ω

)
(7.8)

= WATOMIC . (7.9)

Thus, the free-free matrix elements and their thermal average should be the same in both mod-
els, assuming the chemical potentials are also the same.

Finally, the free-free matrix elements are known to diverge as ω−1 at low frequency due
an implicit assumption in both models that the excitations are infinitely long-lived. To handle
the resulting ω−2 divergence in the free-free contribution, both the ATOMIC and average-atom
calculations employ a renormalization of the free-free cross-section based on the Drude model
of electron transport,

σ f f (ω)→ ω2

ω2 +ν2 σ f f (ω) , (7.10)

where ν is an electron-ion collision frequency that mocks up the decay of the electron exci-
tation. Each model uses a different prescription for computing ν . Further details on these
differences are given in the following sections.

Isolated Atom

The isolated atom model ATOMIC [34, 59] uses an atomic physics approach to predicting
the macroscopic behavior of the plasma. It utilizes atomic structure and radiative transitions
from the LANL atomic physics codes [25]. The accuracy of the atomic structure calcula-
tions depends on the number of configurations included. All necessary electron configurations
for all excitations and ionization stages are included in the CATS code in order to calculate
the probability of transitions between states. This can become computationally expensive for
high-Z atoms. Photo-excitation and photoionization cross sections are calculated including
semi-relativistic corrections such as spin-orbit coupling, an expansion of the relativistic kinetic
energy, mass velocity term, and the Darwin term in the GIPPER code. The model also in-
herently includes multiple ionization stages when calculating these transitions resulting in a
multitude of bound-bound resonances.
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Inter-ionic structure can be important in the warm dense regime, especially at lower tem-
peratures and higher densities. In ATOMIC this structure is included indirectly through the use
of a dense-plasma equation of state in order to assign transition probabilities. These plasma
effects due to temperature and density are included using the EOS package ChemEOS [33].

In ATOMIC, the free-free interaction probablilites are calculated with a Yukawa potential[2],

VNe(r) =−Ze2

r
e−r/λ , (7.11)

where Z = ∑ions Z jn j/nI is the average ionicity and λ is the larger of the Debye length,

λD =

4πe2Z2
j nI

kT
+

4πe2ne

k
√

T 2 +T 2
F

1/2

, (7.12)

and Wigner-Seitz radius,

λWS =
(

3
4πnI

)1/3

, (7.13)

where nI and ne are the total ion and electron densities and TF = 2EF/3k is the Fermi temper-
ature. To account for plasma screening within the calculation of the free-free Gaunt factor, a
partial wave approximation is implemented [2]. The single-electron free-free Gaunt factor in
the plane-wave approximation is expressed

g f f (ω,ε) =
1

2π(Z)2

√
3

ε(ε + h̄ω)

∞

∑
`=1

`
{

M2(ki, `;k f , `−1)+M2(ki, `−1;k f , `)
}

, (7.14)

where ε = h̄2k2
i /2me and ε + h̄ω = h̄2k2

f /2me are the initial and final energies of the electron
and M(ki, `i;k f , ` f ) are dipole matrix elements computed in the acceleration gauge.

The photon energy-dependent collision frequency used in the Drude renormalization is
derived for n(ω)≈ 1 and ω � ν(ω), given by[38]

ν(ω) = c
ω2

ω2
p

nIσ f f (ω,T ) . (7.15)

Here ωp =
√

4πe2ne/me is the electron plasma frequency and σ f f (ω,T ) is the thermally
averaged free-free absorption cross section,

σ f f (ω,T ) =
8πZ2e6ne

h̄cω3

(
2π

3mekT

)3/2 √
π/2

I1/2(µ/kT )

∫
∞

0
dεg f f (ω,ε) f (ε){1− f (ε + h̄ω)} ,

(7.16)
where I1/2(µ/kT ) is the order-1/2 Fermi integral.

The state populations calculated from ChemEOS are combined with the atomic structure
data and the free-free contribution to produce an opacity. After renormalization, the free-free
opacity used in ATOMIC is

α f f (ω,T ) =
(

1− e−h̄ω/kT
) ω2

p

ω2 +ν2(ω)
ν(ω)
n(ω)c

(7.17)
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Figure 7.1: Cartoon picture of the average-atom model.

where n(ω) is the refractive index,

n(ω) =

√√√√ω(ω2−ω2
p +ν2)+

√
(ω2 +ν2)

{
(ω2−ω2

p)2 +ω2ν2
}

2ω(ω2 +ν2)
(7.18)

and the leading exponential factor is the stimulated emission correction. We are now able to
compare these definitions with the equivalent quantities in the average atom model.

Average Atom

In the average atom model, the plasma is divided into identical charge-neutral cells, pictured in
Figure 7.1. Each cell contains a one point-particle nucleus at its center surrounded by a cloud of
neutralizing electrons. Each so-called “ion-sphere” has a radius given by Wigner-Seitz length.
The remaining plasma is spatially averaged.

The electron wavefunctions are solved for using Kohn-Sham density functional theory with
an effective electron-nucleus potential given by

V AA
Ne (r) =−Ze

r
+ e

∫
cell

d3r′
ne(r′)
|~r−~r′|

+Vxc[ne(r)]−Vxc[ne] , (7.19)

which is the bare interaction between the electron and nucleus, screening from the surrounding
plasma, and the exchange-correlation energy. In all results shown in this work, the exchange-
correlation energy was taken to be the Dirac local density functional.

We will also consider a related formulation of the electron-nucleus potential derived in the
“pseudoatom” model [16]. In this model, the electrons are not confined to the ion-sphere. The
electron density associated with each ion is determined by solving for the electron density for
the average-atom system, repeating for the average-atom system without the central nucleus,
and then finding the difference. The resulting electron density, nPA(~r), is then split into two
populations based on the sign of the associated energy. The electrons with negative energy
are said to be bound to the ion, and those with positive energy are said to be screening elec-
trons. The electron-nucleus potential in the pseudoatom model, V PA

Ne (~r), is then generated by
the electron density, nPA

e (r). Specific details of the pseudoatom calculation can be found in
Reference [16].
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With the electron wavefunctions obtained, the Kubo-Greenwood formalism gives the frequency-
dependent electrical conductivity. It is the plasma’s real-valued, in-phase response to a monochro-
matic perturbation, i.e., a photon. The result is[77]

σ(ω) =−2πe2nI

ω

∫
∞

0
dεWAA

∫
dk̂i

∫
dk̂ f

∣∣∣√kik f Ji f

∣∣∣2 S
(
|~ki−~k f |

)
(7.20)

where
Ji f =

∫
d3rψ

∗
i (~r)vzψ f (~r) (7.21)

is the velocity-gauge transistion probability amplitude, S(k) is the static structure factor, vz is
the ẑ-direction velocity operator and the wavefunctions ψ i( f )(~r) are related to the full wave-
function inside the cell, ψi( f )(~r) according to

ψi( f )(~r) = ψ i( f )(~r)e
i~ki( f )·~R , (7.22)

where ~R is the position of the nucleus.
In the Drude renormalization of the free-free conductivity, the collision frequency, ν , is

determined by requiring that the conductivity sum rule,∫
∞

0
dωσ(ω,ν) =

π

2
e2N f ree

e

meV
(7.23)

be satisfied, where N f ree
e /V is the number density of free electrons. Eq. 7.23 is an exact con-

straint on the conductivity, and it will be seen to be a key part of predicting the correct low-
frequency response of the plasma.

Eq. (7.20) gives only the real (dissipative) part of the conductivity, σ1. The imaginary part,
σ2, can be accessed through a Kramers-Kronig relation,

σ2(ω) =−2ω

π
P
∫

∞

0
dx

σ1(x)
ω2− x2 , (7.24)

where P denotes the Cauchy principal value. The optical properties of the plasma then follow,
namely the dielectric function

ε1(ω) = 1− 4πσ2(ω)
ω

(7.25)

ε2(ω) =
4πσ1(ω)

ω
, (7.26)

the index of refraction

n(ω) =

√
ε1(ω)+ |ε(ω)|

2
, (7.27)

and the absorption coefficient

α(ω) =
4πσ1(ω)

n(ω)c
. (7.28)

With these optical properties in hand, it is possible to make direct comparisons with the
isolated-atom model used in ATOMIC.
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Figure 7.2: Deuterium absorption coefficient at various temperatures and densities. The inset
contains the index of refraction.

Findings

Deuterium

Our first comparisons were performed on fully ionized, warm dense deuterium. This allowed
for isolation of the free-free component of the opacity. The temperatures and densities shown
were selected to compare with the quantum molecular dynamics results published in Refer-
ence [36]. To better compare with the average-atom data, the contribution due to Thomson
scattering is not included in the ATOMIC results shown. Thus the curves shown in Figures 7.2
a-c are absorption coefficients, not opacities, though the difference is negligible at all but the
highest photon energies shown. We have also excluded the contributions due to H− absorption
in the ATOMIC calculations.

As stated in the methods section, the ATOMIC model contains a photon-frequency depen-
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dent ion collision freqency. The static structure factor was not included in the conductivity
calculation for the average-atom model for this comparison. The comparison between PA,
ATOMIC, and QMD for the frequency-resolved absorption coefficient shows agreement be-
tween all three models at high photon energies, but the ATOMIC results are considerably dif-
ferent at low photon frequencies. The exact form of the ion-collision frequency dominates the
low-frequency response of the plasma. Thus the collision freqency employed in the ATOMIC
free-free calculation may be responsible for the difference in behavior. We explored the effect
of implementing conductivity sum rule in ATOMIC with a constant ion collision freqency in
the renormalization factor. The resulting absorption curves are shown in Figures 7.3 a-c.

The implementation of the sum rule increases the absorption coefficient at low photon
energies by orders of magnitude. Agreement between all three models is now greatly increased
in the low photon energy region. The pseudo atom data now contains a tabulated static structure
factor from the average-atom model. The inclusion of the structure factor recovers the kink in
the QMD data around the plasma freqency. Noticable differences remain between models due
to the choice of screening potential and use of a static structure factor in the average-atom
model.

Next we compared Rosseland mean opacities of deuterium as defined in Reference [36]:

1
κR

=

∫
∞

0 dω
∂B(ω,T )

∂T n2(ω) 1
ρα(ω)∫

∞

0 dω
∂B(ω,T )

∂T n2(ω)
. (7.29)

Other definitions of the Rosseland mean opacity are also used in the literature[37]. Mean opac-
ities are shown in Figures 7.4a and 7.4b. At high temperatures, the high-frequency response of
the photon-freqency resolved opacity is most significant. Thus we expect agreement between
models for the Rosseland mean at high temperature as seen in the figures. At lower tempera-
tures, the implementation of the conductivity-sum rule for a constant ion-collision frequency
and the inclusion of ion structure makes a significant difference in the mean opacity.

To further explore the effects of these two changes, we looked more closely at the conduc-
tivity, screening potentials, and ionic structure. In the leftmost panels Figure 7.5, we have plot-
ted the electrical conductivity on a linear scale to assess the quantitative differences between
the various model options at low frequency. In particular, note the low photon energy behavior
of the conductivity of ATOMIC with the photon-frequency dependent ion collision frequency.
This DC conductivity of zero is unphysical for plasma. It is also useful to compare the various
Kubo-Greenwood calculations (green and yellow lines) to ATOMIC with the constant collision
frequency (solid blue). The various Kubo-Greenwood lines represent successive stages of sim-
plification to the model physics, namely turning off the static structure factor (dashed greeen)
and then also using a Yukawa potential in place of the self-consistent pseudoatom potential
(solid orange). In principle, the latter should be most similar to the free-free model assumed in
ATOMIC. The exact cause of the remaining differences has not yet been thoroughly tested, but
some possibilities could be differences in the chemical potential or differences in the numerics
of the acceleration gauge implementation versus the velocity gauge.
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(a) Absorption coefficient at 5.388g/cc and 10.77eV.
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(b) Absorption coefficient at 5.388g/cc and 43.09eV.
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Figure 7.3: Deuterium absorption coefficient at varrious temperatures and densities where the
free-free contribution obeys the conductivity sum rule. The inset contains the index of refrac-
tion.
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Figure 7.4: Rosseland mean opacities of deuterium at two densities and a range of temperature.
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Figure 7.5: Top row, left to right: conductivity, electron-nucleus potentials, and static structure
factor for deuterium plasma at 5.388g/cm3 and 1 eV. Bottom row: same, at a temperature of
43.09eV.
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Figure 7.6: Absorption curves for aluminum at 5eV and varying densities. From top to bottom:
a) ρ = 0.027, b) ρ = 0.27, and c) ρ = 2.7g/cm3. Dashed blue: ATOMIC with the energy-
dependet collision model. Solid blue: ATOMIC with constant collision frequency from the
sum rule. Solid pink: Average-atom Kubo-Greenwood using the average-atom potential and
including the static structure factor.

Aluminum

Calculations were performed for a warm aluminum plasma in order to compare each model’s
treatment of both bound and free electrons since aluminum is only partially ionized at these
conditions. We considered aluminum at densities of 0.027, 0.27, and 2.7 g/cc, all at a tem-
perature of 5 eV. Absorption curves are shown in Figure 7.6 Several new features appear as
compared to the deuterium calculations, in particular the significant contributions from bound-
bound and bound-free absorptions are denoted by resonances and edges.

First, the average atom model predicts fewer bound-bound resonances than ATOMIC does.
This is clearest in the vicinity of the the L-shell (∼ 100eV) in Figure 7.6a, where each average
atom resonance is surrounded by multiple ATOMIC resonances. The explanation for this lies in
how each model handles the ionization state of the atom. ATOMIC performs separate electron
structure calculations for each discrete ionization charge state, i.e., Al+, Al2+, etc. In the
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K (eV) L (eV)
ρ[g/cc] ATOMIC AA ATOMIC AA
0.027 1585 1513 95 82
0.27 1581 1502 91 73
2.7 1586 1492 100 74

Table 3: K- and L-edge energies (in eV) for ATOMIC and average-atom calculations for the
cases shown in Figure 7.6.

Figure 7.7: Experimental absorption coefficient measurements (in cm2/g) for solid aluminum
at room temperature, extracted from Reference [80].

dipole matrix elements, each ionization stage is assigned a weight according to its likelihood
of occurring, supplied by the equation of state. In the average atom, however, the ion has just
a single average charge state, which is typically fractional. Accordingly, fewer bound-bound
resonances contribute to the average atom optical properties.

At the higher densities shown, pressure ionization of upper-shell electrons results in fewer
bound-bound transitions, revealing the underlying bound-free edges. Evidently ATOMIC and
average-atom predict different photoionization energies, seen as an energy shift between the
ATOMIC and average-atom absorption lines in the vicinity of bound-free edges. These differ-
ences are summarized in Table 3.

It is simplest to first address the K-shell discrepancies, since those electrons are most deeply
bound. Their photoionization energy thus should be only weakly dependent on the temperature
and density of the plasma. Because of this, we can compare to available “cold-curve” absorp-
tion data from X-ray scattering experiements performed at room temperature. The Al absorp-
tion measurements of Reference [80] in Figure 7.7 give the K-shell bound-free edge at 1560 eV,
with which the ATOMIC predictions agree more closely. One candidate explanation for the
average-atom’s underestimation of the K-shell binding energy would be the semi-relativistic
corrections used in the ATOMIC calculation, which are absent from the average-atom model
used here. However, re-running atomic structure calculations for the the above cases without
these terms in the Hamiltonian revealed that they only account for about 5 eV of the difference
seen in the K-shell. Another possibility could be a weakness in conventional density functional
theory known as the “band-gap” issue, which results from DFT’s inexact treatment of the elec-
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κR (104[cm2/g])
ρ[g/cm3] ATOMIC AA

0.027 1.021 1.804
0.27 1.350 1.771
2.7 7.285 1.028

Table 4: Rosseland mean opacities (at T = 5 eV) of aluminum for adjusted ATOMIC and
average-atom calculations for the cases shown in Figure 7.6).

tron self-energy. Implementing the necessary extension (known in the DFT literature as the
GW approximation) has not been pursued at this time.

The discrepancies in the L-shell binding energies are less clear. The L-shell electrons are
less tightly bound to the nucleus than the K-shell, so their energy levels are expected to be more
effected by the plasma environment. It is not clear in this case whether the cold curve value
(70 eV) is a useful reference point. Interestingly, though, the average-atom L-shell energy
seems to be in good agreement with cold curve data across all densities shown here.

We also computed Rosseland mean opacities for these aluminum cases. The results are
summarized in Table 4. At a temperature of 5 eV, the Rosseland integral samples the aborption
coefficient mostly around ∼ 20eV. This explains the relatively large discrepancy at 2.7 g/cc,
where average-atom predicts a much sharper dropoff in near the plasma frequency (15.23 eV)
compared to ATOMIC. This feature results from the fact that ATOMIC’s collision frequency
is computed to be much larger than the average-atom’s (h̄ν =17.42 versus 1.09). This in turn
is likely due to different predictions for the mean ionization, since the conductivity sum rule,
Eq. (7.23), depends on the number of free electrons. Typically, the average-atom and ATOMIC
mean ionizations agree within 10%, but for the 2.7 g/cc case, the difference is much larger,
with ATOMIC predicting ne/nI = 2.79 versus the average-atom value ne/nI = 2.06.

Conclusion
Our goal was to compare an isolated-atom approach to modeling dense plasmas with an average-
atom approach to determine where strengths and weaknesses in each model lie. In doing so we
sought to improve agreement between the two where possible. Despite differing approaches
to the physics necessary for determining the optical properties of the plasma, in general, we
found that both models predict similar features. The most noticable difference was the low
photon-frequency behavior of the aborption coefficient. For fully ionized deuterium, ATOMIC
predicted a DC conductivity of zero, which is unphysical for plasma. Implementing the con-
ductivity sum-rule in ATOMIC resulted in significantly better agreement with average-atom
and QMD data. Calculations carried out for aluminum revealed better treatment of deeply
bound electrons in ATOMIC. However, the binding energies of valence electrons are expected
to be more sensitive to the surrounding plasma environment, and it is not yet clear which model
treats them more accurately.

Slight differences remain in the free-free absorption even when using the same electron-
nucleus potential and removing ion structure from the average-atom model. An explanation
for these remaining differences requires further exploration.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 80



Opacity of Dense Plasmas: A Model Comparison

Questions remain regarding the treatment of bound electrons as well. How large is the
effect of the DFT bad-gap errors in the average-atom model’s prediction of bound-bound and
bound-free features, and how does it affect core versus valence electrons? How impactful is
the inclusion of semi-relativistic corrections in the ATOMIC model? How do variations in
calculations of the average ionicity of the plasma affect the results?
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Abstract

We present three dimensional smoothed particle hydrodynamic simulations of super-
nova remnant development under the effects of density and velocity perturbations within
the oxygen shell of two distinct progenitors. We produced explosion asymmetries of vary-
ing degrees. Multiple types and modes of perturbations were explored. Unperturbed mod-
els were also generated for comparison. We discuss how these perturbations may explain
the observed asymmetries of supernovae remnants that have been observed for decades.
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Introduction
Many observed supernova remnants (SNR) are highly asymmetric, [31] yet simulations have
only recently begun to explore this phenomenon, as most simulations have been carried out
in 1 dimension.[27] Since the discovery of turbulent mixing within supernovae (SNe) with the
observation of SN 1987A, [35] simulations thereof have indicated the presence of Rayleigh-
Taylor and Kelvin-Helmholtz instabilities.[6] Explanations for what seeded these instabilities
include the radioactive decay of nickel and cobalt during the explosion or in the explosive
burning layers (oxygen or silicon) in the progenitor star. [27]

Multiple physical processes have been suggested to explain these asymmetries even though
the detailed physics of supernovae explosions is not known. Recent literature suggests that
structured distributions of metals in supernova ejecta can be explained by significantly asym-
metric explosions. By comparing the observed metal abundance of different regions of known
core collapse SN remnants to core-collapse SN models significant elongation in ejecta regions
denote the presence of a previously non-uniform explosion. Another explanation is that the
non-uniform ejecta may be the result of an explosion in non-uniform circumstellar medium
(CSM). A uniform explosion that takes place in non uniform CSM will be deformed by the
inhomogeneities in the medium and produce a SNR that has visible asymmetry.

Finally, the asymmetries in observed SNR could be attributed to irregularities within the
star. Asymmetries present before the explosion will be magnified as the metals are ejected
through space. This third explanation is presented here. Our focus is on the asymmetries in
star that would naturally appear from mixing and convection. Perturbations will be introduced
within the star, placed in a region that the explosion shock has not yet reached. The explosion
is then allowed to continue and funnels the perturbation through the star which continues to
perturb throughout the explosion and appear as asymmetry in the SNR.

We simulate two progenitors, one 16M� star modeled after Cassiopeia A (CasA), and a
25M� red supergiant. These models were chosen so we could compare the evolution of very
distinct stars: the red supergiant has a significantly larger hydrogen layer and a more com-
pact O-layer in comparison to CasA. Each model contains approximately 10 million variable
massed particles. At the center of the model is a neutron star which particles are allowed to
collapse into.

Code

SNSPH

The supernovae are simulated with smooth particle hydrodynamics (SPH) using SNSPH, a
SPH particle based code developed for the specific purpose of SN simulation. [28] SNSPH is
a powerful tool and has been used for a wide range of problems including: stellar collapse,
supernova explosions and remnant production, studies of massive binaries, and solar winds.
Their are many advantages to using this code. The hydrodynamics scheme conserves total
energy and total momentum, while the Lagrangian technique allows the resolution to follow
mass. This is important because the supernova explosion rapidly increases in space but the
mass is focused in one place (the neutron star at the center).
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Progenitor Models

For the initial conditions we use two different stellar progenitors: a solar metallicity, red super-
giant (star) RSG and the binary 15M� progenitor from [90]. In part, these progenitors were
chosen to resemble the progenitors that have been inferred for G292 [53] and CasA [90]. We
mimicked a binary common envelope phase in the 15M� star by removing its hydrogen enve-
lope when the star is at the base of the first-ascent red giant branch. Both stars were evolved
up to the onset of core collapse with the stellar evolution code TYCHO [89]. The models are
non-rotating and include the hydrodynamic mixing processes described in [89, 91, 3, 4, 5].
The inclusion of these processes, which approximate the integrated effect of dynamic stability
criteria for convection, entrainment at convective boundaries, and wave-driven mixing, results
in significantly larger extents of regions processed by nuclear burning stages. Mass loss uses
updated versions of the prescriptions of [48] for OB mass loss and [12] for red supergiant mass
loss, and [51] for Wolf-Rayed phases. A 177 element network terminating at 74Ge is used
throughout the evolution. The network uses the most current Reaclib rates [68], weak rates
from [52], and screening from [30]. Neutrino cooling from plasma processes and the Urca
process is included.

To model collapse and explosion, we use a 1-dimensional Lagrangian code to follow the
collapse through core bounce. This code includes 3-flavor neutrino transport using a flux-
limited diffusion calculation and a coupled set of equations of state to model the wide range
of densities in the collapse phase (see [35, 26] for details). It includes a 14-element nuclear
network [10] to follow the energy generation. Following the beginning of the explosion in 1D
saves computation time and is sufficient for this problem, as we were mainly interested in the
formation of structure during the passage of the shock. The explosion was followed until the
revival of the shock, and then mapped into 3D to follow the rest of the explosion and further
evolution in 3 dimensions. The mapping into an optimized, 3D distribution of SPH particles
was accomplished using the WVT algorithm described in [22]. The mapping took place when
the supernova shock wave has moved out of the Fe-core and propagated into the Si-S rich shell,
i.e. shortly after the revival of the bounce-shock.

Periodic Perturbations

We implemented various periodic perturbations of mass and velocity in an effort to replicate
possible angular variations generated by convection within the O-layer.

Velocity Perturbation

The intersection between thin (≈ 15◦) spherical wedges and the O-layer have their radial ve-
locity set to a prescribed ±v, with the sign alternating. This structure is chosen to try to imitate
the flows generated by the O-layer convective cells. For these simulations, we kept the count
of altered wedges to 4.
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Name Perturbation func.

1-mode sinusoidal 1+asin2(φ)sin2(θ)
2.5-mode sinusoidal 1+asin2(2.5φ)sin2(2.5(θ − π

2 ))

Table 5: Mass perturbation functions

Mass Perturbation

The periodic density perturbation code directly prescribes a mass perturbation solely to the
O-layer based upon a particular distribution. These distributions are described1 in Table 5.
The chosen values of a were .10, .20, and .40. While increasingly less realistic, we wished to
test the limits of both small and large perturbations’ effects upon late-stage supernova remnant
structure and density variation. After perturbation, the O-layer’s mass is normalized to ensure
that it is solely the distribution that is causing any deviations from the symmetric case.

Both low-mode and high-mode (1-mode sinusoidal and 2.5-mode sinusoidal in Table 5,
respectively) density variations are explored to determine whether perturbation scale is a sig-
nificant factor in the resulting asymmetries.

Non-periodic

Velocity Perturbation

After identifying the oxygen layer a region is chosen to become the high velocity perturba-
tion region. Velocity asymmetry is artificially imposed by unilaterally increasing the radial
velocities in the region by a factor and then taking the absolute value of the radial velocity.
All particles in this region will be forced to move away from the neutron star at an increased
speed. To keep this value realistic, the artificially induced speed is produced by multiplying
the speed by a factor that is smaller than the speed of the shock. The radial velocities are then
randomly converted back to Cartesian values. Opposite the region of positive radial velocity an
equal number of particles are chosen to receive a negative radial velocity, their velocity is then
randomly converted back to Cartesian values. This method was chosen to perturb the velocities
within the oxygen shell, but allow the kinetic energy and particle density to be conserved.

The single mode explosion asymmetry in velocity is created using a sharp edged conical
geometry that can be quantified by two parameters. First, the opening angle of the perturbed
region (θ ) and secondly, the multiplicative factor ( f ) chosen to artificially increase or decrease
the velocity in this region. The four models produced are as follows:

• Unperturbed

• Small Velocity Perturbation: θ = 45◦, f = 105 cm/s

• Mid Velocity Perturbation: θ = 45◦, f = 106 cm/s

• Large Velocity Perturbation: θ = 45◦, f = 107 cm/s

1a denotes a perturbation weight parameter
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The f value for the negatively and positively perturbed regions are identical, while the
θ value is opposite for the negative region. For example, the positive radial velocities are
enhanced in the region of 0 to 45 degrees while the negative velocities are enhanced in the
region from 180 to 235 degrees.

Mass Perturbation

The manufactured mass perturbations are also applied to the oxygen shell with a conical geom-
etry. A region is chosen to become more dense than other regions in the oxygen shell in such a
way that overall density and mass is conserved for the region. Within the chosen perturbation
region, particles below a certain oxygen mass value are identified and then their oxygen mass
is replaced by particles from outside the perturbed region of higher oxygen mass. Overall the
perturbation produces a region of high oxygen mass, while outside this perturbation oxygen
mass maintains its isotropic spread (though at a lower average value) within the oxygen shell.

The single mode explosion asymmetry in mass is created using a sharp edged conical ge-
ometry that can be quantified by two parameters as above. First, the opening angle (θ ) and
secondly, the base oxygen particle mass value chosen to be the minimum oxygen particle mass
value (h) allowed in the perturbation region of ”high” oxygen mass. The four models produced
are as follows:

• Unperturbed

• Small Mass Perturbation: θ = 45◦,h = 0.15

• Mid Mass Perturbation: θ = 45◦,h = 0.25

• Large Mass Perturbation: θ = 45◦,h = 0.35

These values were chosen to create an even spread between the possible minimum oxygen
mass for a particle in the oxygen shell and the maximum oxygen mass for a particle in the
oxygen shell .

Dual Perturbation

A third type of simulation was produced combining these two perturbations. These models
can be quantified by the three parameters explained previously. In the dual simulation, mass
perturbations were introduced in areas of negative radial velocity. This is intuitive, because
higher mass particles will sink toward the center of the simulation and naturally would have
more negative radial velocities. Four models were produced:

• Unperturbed

• Small Dual Perturbation: θ = 45◦, f = 105 cm/s,h = 0.15

• Mid Dual Perturbation: θ = 45◦, f = 106 cm/s,h = 0.25

• Large Dual Perturbation: θ = 45◦, f = 107 cm/s,h = 0.35

Table 6 lists the suite of simulations studied in this paper. We have focused on a constant
θ value and single modes, while studying how larger velocity perturbations and larger mass
perturbations can change the physical shape and elemental spread of the supernovae remnant.
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Model Simulation Name θ f (Velocity Perturbation) [cm/s] h (Mass Perturbation)
CasA Unperturbed 0 0 0
CasA sVEL 45 105 0
CasA mVEL 45 106 0
CasA lVEL 45 107 0
CasA sMASS 45 0 0.15
CasA mMASS 45 0 0.25
CasA lMASS 45 0 0.35
CasA sDUAL 45 105 0.15
CasA mDUAL 45 106 0.25
CasA lDUAL 45 107 0.35

Red Supergiant Unperturbed 0 0 0
Red Supergiant sVEL 45 105 0
Red Supergiant mVEL 45 106 0
Red Supergiant lVEL 45 107 0
Red Supergiant sMASS 45 0 0.15
Red Supergiant mMASS 45 0 0.25
Red Supergiant lMASS 45 0 0.35
Red Supergiant sDUAL 45 105 0.15
Red Supergiant mDUAL 45 106 0.25
Red Supergiant lDUAL 45 107 0.35

Table 6: Table showing different non periodic perturbations for mass and velocity for each
model simulated

Periodic Results

Mass Perturbation

To evaluate the size of variations for the supernova remnants in the periodic mass perturbation
case, the particles are divided into “H” and “L” solid angle sectors: for a particle at coordinates
(r,φ ,θ), if f (r,φ ,θ) > a/2, the particle will be placed in the “H” set, otherwise the “L” set. 2

Our main measure of angular variation is the ratio between the mean densities of the “H”
and “L” particle sets as a function of r, denoted 〈ρH〉/〈ρL〉. Because SNSPH implements
adaptive time-stepping, to more accurately compare results from separate simulation runs, the
radial coordinate is divided by the radial distance of the furthest-traveled particle, denoted rmax.
These results are viewable in Figure 8.1 for the red supergiant star and in Figure 8.2

One conclusion can immediately be made at these results: the asymmetries appear to be
“smoothed over” after some time evolution and the density perturbations do not directly dictate
the density ratio profile as one varies the normalized radius. Regardless, there are a measur-
able differences between the unperturbed (“0% mass perturbation” in Figures 8.1 and 8.2) and
perturbed supernova remnants. These differences are largest for r/rmax < 0.2; on this domain

2While f (r) maybe strictly non-negative, the mass is normalized after perturbation, so the “L” particles do in
fact lose mass.
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Figure 8.1: Asymmetries caused by 1-mode mass perturbations in red supergiant
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Figure 8.2: Asymmetries caused by 1-mode mass perturbations in CasA
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there is a large peak close to the origin, signifying particles from the high mass have fallen
back causing the relative rarefaction to the immediate right. However, conclusions beyond
these rough assessments are difficult to state with certainty, especially in the case of the red su-
pernova cases: while the perturbed systems do differ from the unperturbed in consistent ways,
the absolute discrepancy is not linear or even strictly monotonically increasing as a function of
mass perturbation size (in the case of the red supergiant).

For the periodic velocity perturbation case, the particles are divided evenly into 4 wedges
based upon the azimuthal angle alone; the two wedges with velocity perturbations are in the
“P” set while the others are in the “U” set. We then evaluate 〈ρP〉/〈ρU〉 parallel to the periodic
mass perturbation case.

Velocity perturbations for the periodic case require further analysis and will be included in
the publication-ready version of this work.

Non-Periodic Results
In all models produced, the required perturbation to show major differences was at the large
end of the spectrum. In particular, the lDUAL model, the asymmetry in the results SNR oxygen
shell is quite distinct. Since the perturbations were placed in the oxygen shell, we checked for
asymmetry by plotting the average particles oxygen mass within equally spaced shells in the
region of perturbation.

Figure shows the result of the sVEl, mVEL, and lVEL models compared to the unperturbed
model about 2.5 simulated days after the explosion. We have zoomed in on the region of
interest. It should be noted that an order of magnitude increase in the multiplicative factor
does not result in a large increase in asymmetry present in the supernovae remnant. The largest
velocity perturbation shows the greatest asymmetry and increasing this perturbation increases
the asymmetry but becomes unphysical at values larger than the speed of the shock.

Figure shows the result of sMASS, mMASS, and lMASS models compared to the unper-
turbed model about 2.5 simulated days after the explosion. We have zoomed in on the region
of interest. As with the velocity perturbation, small but quantifiable differences appear in the
supernovae remnant.

Comparison to Observation
Once our explosions become homologous, we stopped our simulations. As this supernova
moves out in the circumstellar medium, the shock will decelerate, heating the ejecta and pro-
ducing an observable supernova remnant. Observations of supernova remnants in the region
between the forward and reverse shocks probe our uncertainties. Because we do not include
the circumstellar medium, we can not produce a first-principles emission model. However, to
get a rough idea of the observability of our asymmetries, we plot the distribution of a range of
elements (iron, silicon, oxygen), projected in space. Here, we assume the emission scales as
the square of the density (e.g. thermal bremsstrahlung emission) and we have chosen different
viewing angles as well as different positions of the reverse shock relative to the forward shock.
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Figure 8.3: Figure showing the results of various velocity perturbations. Unperturbed model is
shown for a comparison to a standard spherically symmetric simulated supernovae remnant.

Figure 8.4: Figure showing the results of various mass perturbations. Unperturbed model is
shown for a comparison to a standard spherically symmetric simulated supernovae remnant.

Summary and Future Work
The hydrodynamic simulations discussed here show only a small portion of the large parameter
space for perturbations within exploding stars that can produce asymmetries in SNR. From this
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Figure 8.5: Bottom left figure is a mass density plot of perturbed model at late times. Top
left plot shows the spatial distribution of a range of elements in same X coordinate of mass
density plot. Bottom right plot shows the spatial distribution of a range of elements in same Y
coordinate of mass density plot.

limited sample we can say that perturbations within the oxygen layer of an exploding star can
produce asymmetries in the supernovae remnants studied by observers, though to be visible
these perturbations much be quite large. It is encouraging that these perturbations produce
asymmetries that are comparable to those seen in Cassiopeia A.

The significantly thicker hydrogen layer and more compact oxygen layer did appear to
affect the effects of perturbations: while CasA showed a strong correlation between the pertur-
bation strength and the resulting deviations from the unperturbed system, the same can not be
said for the red supergiant.

Asymmetric ejecta heavily interacts with the local circumstellar medium. Future work will
involve the studying the strong interaction between the supernovae remnant produced by these
perturbed stars and the circumstellar medium surrounding the explosion region. Hopefully
these results will further link the simulations results to the data recorded by observation.
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Abstract

In this work, we explored the behavior of two Eulerian hydrodynamic codes in simulat-
ing two-dimensional Richtmyer-Meshkov Instability, in which a perturbed fluid interface
becomes unstable after being hit by a shock wave. Our goal was to measure the influence
of the solution methodology on the behavior of the mixing zone created by the shock in-
teraction with the material interface. Our computational tools were the xRage hydrocode
[19] and the University of Chicago Flash Center code, FLASH [17]. Our focus was on
the behavior of the secondary vortical structures on the unstable interface, where we found
many significant differences between codes and solver options.
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Introduction
Richtmyer-Meshkov Instability occurs when a shock wave refracts through a curved interface
between two fluid materials. As we shall see, any perturbations that induce curvature to the
interface will grow and develop, causing the two fluids to mix; the system will never return
to its initial state. This phenomenon plays an important role in many areas of physics. In
inertial confinement fusion [67], which uses lasers to heat and compress a fusion target, this
instability causes uneven compression and heating, limiting the efficiency of the procedure.
Another application includes supernova mixing [44].

Richtmyer-Meshkov Instability drives the mixing of two fluids, and as such is described by
the two-dimensional inviscid vorticity equation [79]:

D~ω

Dt
=

1
ρ2 ∇ρ×∇P, ~ω = ∇×~u (10.1)

This equation states that the time rate of change of the vorticity is equal to the cross product
of the density and pressure gradients, modulated by the inverse square of the density. It can be
derived by taking the curl of the two dimensional inviscid Euler equation [79].

D~u
Dt

=
−∇P

ρ
(10.2)

To gain intuition for this mathematical equation, we will first present a simplified explana-
tion of Richtmyer-Meshkov Instability.

(a) Initial Setup (b) Shock Refraction

(c) Vorticity Direction (d) Interface Growth

Figure 10.1: Cartoon illustrating the phases of Richtmyer-Meshkov Instability at a fluid inter-
face
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Consider a heavy and light fluid at rest separated by a curved interface, as shown in 10.1a.
There are no external forces in the system, including gravity, and the pressure is equal through-
out the system. We assume that any physical diffusion that arises from the density gradient
(10.1a) at the interface is negligible for the timescales we are considering. So as is, the system
is in equilibrium, and in particular, the vorticity is initially zero.

We introduce a shock wave into the system, traveling downward. When the shock hits the
interface, as shown in 10.1b, a pressure gradient develops in the vertical direction. Notice then
that the pressure and density gradients are misaligned, and so their cross product is non-zero.

∇ρ×∇P 6= 0 (10.3)

By equation 10.1, vorticity is introduced into the system 10.1c, leading to stretching and
deformation of the material interface, whose evolution at a later time is shown in 10.1d.

Methods
We modeled a 2D shock tube-style problem, in which a shock travels down the tube and refracts
through a sinusoidally perturbed interface between two fluids of different material properties.
In our case, we used air as the heavier fluid, and helium as the lighter fluid. Ahead of the
shock, the two materials are stationary and in pressure and thermal equilibrium. We looked
at two cases: a shock traveling from helium to air, and vice-versa. Both gases were modeled
using the perfect gas equation of state [79].

Figure 10.2: Schematic of the initial conditions used in our study

We modeled the problem using two different Eulerian hydrocodes: xRage, which is devel-
oped at LANL and uses a 2nd-order MUSCL-Hancock hydrodynamic solver [19], and Flash,
which is developed at the University of Chicago Flash Center for Computational Science, and
uses a 3rd-order Piecewise Parabolic Method (PPM) solver [17][20].

The boundary conditions were periodic at the left and right walls, and reflective at the bot-
tom. The top boundary in xRage was “frozen” [19], and in Flash was “outflow” [17]. The
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initial problem setup was otherwise identical for both codes: our base (unrefined) compu-
tational domain was 80 cells wide and 800 cells tall. The 10:1 aspect ratio was chosen to
minimize the effects of secondary reflected waves on the interface, and to observe the interface
evolution over longer time scales. Both codes were run using up to three levels of adaptive
mesh refinement (AMR). In xRage, refinement is done on individual cells, such that one level
of refinement will split a cell in half along each spatial direction (e.g. in 2D, it will be split into
four equally sized new cells) [19]. AMR in Flash is block-based, meaning that for each level
of refinement, an 8x8 block of cells (the default block size) will be split into four equally sized
blocks of smaller 8x8 cells [17]. Both of these methods achieve the same maximum resolution
at each refinement level–at three levels of AMR, the effective resolution will be multiplied by
a factor of 23 in each spatial direction.

The fluid properties used for both codes were as follows:

Air He
Density (g/cm3) 0.001 0.000164

Pressure (bar) 1 1
Gamma (CP/CV ) 1.4 5/3

Table 1: Unshocked flow state initial conditions

The pressure behind the incoming shock was 10 bars, and the flow state behind the shock
was computed from the Rankine-Hugoniot equations for a perfect gas [79]:

ρshocked = ρahead

Pshocked
Pahead

+ µ2

1+ µ2 Pshocked
Pahead

, µ
2 =

γ−1
γ +1

m =
√

Pshocked−Pahead

Vahead−Vshocked
, V = 1/ρ, ushocked = uahead−

Pshocked−Pahead

m

(10.4)

In xRage, we compared three interface options: no explicit interface treatment, artificial
compression, and volume-of-fluid interface reconstruction (VoF). We also looked at the effects
of using a non-pressure-temperature-equilibrium (no-PTE) model, which allows for tempera-
ture discontinuities between fluid species in multimaterial cells [19]. In Flash, we compared
the default directionally-split PPM solver with the unsplit PPM solver [17].
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Findings

xRage

xRage, Default Solver
no mesh refinement 1 level refined 2 levels refined 3 levels refined

no
in

te
rf

ac
e

tr
ea

tm
en

t
ar

tifi
ci

al
co

m
pr

es
si

on
vo

lu
m

e
of

flu
id

Figure 10.3: Plots of density. Late-time comparison of refinement levels and interface treat-
ments in xRage using default solver. Shock traveling from He to Air. All plots are on the same
color scale.
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xRage, Default Solver
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Figure 10.4: Plots of density. Late-time comparison of refinement levels and interface treat-
ments in xRage using default solver. Shock traveling from Air to He. All plots are on the same
color scale.
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xRage, no-PTE Solver
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Figure 10.5: Plots of density. Late-time comparison of refinement levels and interface treat-
ments in xRage using no-PTE solver. Shock traveling from He to Air. All plots are on the same
color scale.
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xRage, no-PTE Solver
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Figure 10.6: Plots of density. Late-time comparison of refinement levels and interface treat-
ments in xRage using no-PTE solver. Shock traveling from He to Air. All plots are on the same
color scale.
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Flash
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(b) Shock traveling from Air to He

Figure 10.7: Plots of density. Late-time comparison of refinement levels and directionally-split
versus unsplit solver in Flash.
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Additional Figures

(a) xRage default solver (b) xRage no-PTE solver

Figure 10.8: Plot of temperature gradient magnitude with and without no-PTE solver option in
xRage. Both cases using VoF interface tracking. Shock traveling from He to Air.

(a)
xRage

(b)
Flash

Figure 10.9: Plot of pressure gradient magnitude in xRage and Flash. Both cases at 3 levels
AMR. Shock traveling from He to Air.
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Discussion

We found the choice of interface treatment in xRage to be particularly important, especially
with a lower-resolution mesh (see Figures 10.3, 10.5, 10.4, and 10.6). The VoF option was
more successful than artificial compression at reducing the amount of numerical diffusion,
although VoF did cause numerous droplets to break off from the main spike. This can be
understood as a result of VoF effectively producing numerical surface tension, and raises some
questions as to the physicality of such a treatment.

The no-PTE option in xRage was helpful in reducing numerical diffusion of the tempera-
ture, as can be seen in Figure 10.8. This is important because the Euler equations that these
codes intend to solve are adiabatic, so numerical effects that result in heat transfer are in viola-
tion of that assumption. In addition to sharpening the temperature disconinuity, this option also
seemed to slightly sharpen the interface itself, which is apparent when comparing each image
in Figure 10.3 with the corresponding image in Figure 10.5.

Of interest in the Flash results is the emergence of significantly more chaotic vortical be-
havior than in xRage, particularly at higher levels of mesh refinement. For certain features
this is almost certainly due to the higher-order PPM hydrodynamic scheme used by Flash, as
shown by the numerous Kelvin-Helmholtz vortices that emerge at higher resolutions in Figure
10.7. In general we observed that the unsplit option is noticeably more diffusive for a given
resolution than the split option. However, it is unclear whether the higher order solver alone is
responsible for the unusually straight interfaces along the leading edge of the spike, or the odd
formations at the very tip. It is also unclear why there was a density discrepency between the
split and unsplit solvers, despite identical initial conditions. These are all potential topics for
future investigation.

In Flash, we observed that the higher-order PPM solver resolved secondary shock waves
much better than the lower-order method used by xRage, as seen in Figure 10.9. We speculate
that these secondary waves, which are largely absent in the xRage simulations, could be one
cause of the unusual features discussed above, due to their repeated reflection and refraction
through the interface. Also notable in Figure 10.9 is the appearance of two long vertical waves
in the middle of the Flash simulation. We investigated the production of these waves and
concluded that they were produced at early time due to the outflow boundary conditions used
in Flash.

Time did not permit us to explore the numerous options available in the Flash code for
interface treatment and other solver settings. A more careful treatment of these options might
address some of the issues mentioned above.

Conclusions
Our study included two problem types, each with a total of thirty-two simulations for the
various options available in Flash and xRage. We explored the effects of resolution, interface
treatment, hydrodynamic flow model (PTE vs no-PTE), and operator splitting. We found that
interface treatment and grid resolution had a marked effect on the secondary vortical structures
seen in the simulation. Qualitatively, all of the simulations showed approximately the same
overall growth rate of the instability, as measured by the spike-to-bubble width. However, the
fine details differed in many aspects. In Flash, the split versus unsplit solutions showed quite
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different peak densities behind the waves. In xRage, the combination of the no-PTE option
with VoF interface treatment gave the sharpest and best-resolved interface shapes.

There are aspects of this study that require further investigation. One analysis that remains
to be done is a quantitative measure of convergence under mesh refinement. Furthermore, each
simulation actually resulted in a total of eighty time snapshots, but we only showed one in the
figures above. A more comprehensive comparison of all of these frames would be of interest.
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Abstract

Building on already exiting software infrastructure, this project developed a simple
Navier-Stokes solver for complex flow geometries using asynchronous parallel algorithms.
The solver leveraged the intelligent runtime system, Charm++, to enable both data and task
parallelism within the same application and perform automatic network-migration of data
and computation based on real-time hardware load measurements.
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Introduction
Physics-based simulations are essential for Los Alamos National Laboratory and other Depart-
ment of Energy National Labs. With continued advancement in high performance computing
(HPC) capabilities, physics-based simulations will soon have the potential to become a truly
predictive discipline. However, with supercomputing entering into the era of exascale perfor-
mance there will need to be a paradigm shift in algorithms and software to accommodate for the
unprecedented heterogeneous hardware architectures whose varying performance may change
in time and between different parts of the machine [75]. These paradigm shifting algorithmic
developments will be essential for enabling much higher resolution simulations, for exploit-
ing increasingly complex HPC hardware architectures, and to increase efficiency in simulating
highly dynamic multi-physics phenomena. One approach to tackle the necessary algorithmic
shift in scientific computing is to use asynchronous parallelization execution, rather than the
bulk-synchronous approach widely used in the message-passing paradigm. The asynchronous
parallel approach enables simulations to arbitrarily overlap computation, communication, and
input and output processes in the same application. Through asynchronous parallel execution
it is believed that physics-based simulations will be able to economically utilize future HPC
hardware while also efficiently simulating complex dynamic multi-physics simulations.

In computational fluid dynamics exascale computing has the potential to ameliorate pre-
viously prohibitively expensive simulations including high-fidelity turbulence modeling, com-
plex adaptive mesh refinement algorithms, fluid-structure interactions, or multi-species com-
bustion simulations. The focus for this project was to work on bridging the gap between
computational fluid dynamics and exascale era computing through added development of the
adaptive computational fluid dynamics code Quinoa. Quinoa is an open-source project de-
veloped by Dr. Jozsef Bakosi at the Los Alamos National Laboratory. The code uses an
asynchronous parallel finite-element solver based on the Charm++ parallel system and library
[42]. Charm++ is founded on the migratable-objects programming model and is supported by
an adaptive runtime system. This enables Quinoa to perform fully asynchronous parallel ex-
ecution by specifying both task-parallelism and data-parallelism within the same application.
Over the course of the summer the finite element solver was expanded to solve the generalized
compressible Naiver-Stokes equations. In addition, object migration features were added to
the finite element solver to fully exploit Charm++’s adaptive runtime system in which objects
are dynamically distributed among the available processors based on realtime hardware load
measurements. Finally, Lagrangian tracer particles were added to the finite element solver as a
way to introduce additional work load with the intent to induce dynamic and inhomogeneous
load to the computing hardware.
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Governing Equations
The equations considered were the full set of 3-dimensional Navier-Stokes equations, which
are shown below in conservative form and in tensor notation.

u,t +∇(Fa−Fv) = 0 (11.1)

where,

u =


ρ

ρvi
ρe

 (11.2)

Fa =


ρv j

ρviv j +Pδi j
v j(ρe+P)

 (11.3)

Fv =


0

σi j
vlσl j + kT, j

 (11.4)

and ρ is the density, vi is the velocity field in the direction xi, P is the pressure, e is the specific
total energy, T is the temperature, σi j is the viscous stress tensor, k is thermal conductivity, and
δi j is the Kronecker delta.

The first term in the above arrays represent the conservation of mass, with the second and
third terms representing the conservation of momentum and total energy, respectively. The
array u represents the time dependent flux terms in each equation. This system of equations
was closed using an ideal gas gamma-law equation of state for the pressure term and a caloric
equation to describe the temperature,

P = (γ−1)ρ[e− 1
2

v jv j] (11.5)

T = cv[e−
1
2

v jv j] (11.6)

where γ is the ratio of specific heats and cv is the constant volume specific heat. For the re-
lationship between the viscous stress tensor and the velocity and deformation rate, Newton’s
hypothesis is used along side Stoke’s hypothesis concerning the second viscosity coefficient,
where µ is the dynamic viscosity and λ is the second viscosity coefficient.

σi j = µ

(
∂vi

∂x j
+

∂v j

∂xi

)
+λ

∂vk

∂xk
δi j (11.7)

λ =−2µ

3
(11.8)
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Finite Element Method

Galerkin Weighted Residual Method

There are different types of formulations that can be used when applying a finite element
method (FEM) to a partial differential equation (PDE) or set of PDEs. Just a few of these
include: point fitting, weighted residual methods, and least squares formulations [58]. For this
Navier-Stokes solver, a weighted residual method (WRM) was employed. Before the WRM
could be applied, the following assumption was made:

u(x)≈ uh(x) = Ni(x)û, x ∈Ω. (11.9)

That is to say, some function u(x) in the domain Ω can be approximated as the product of a
set of known functions Ni(x) and a set of free parameters û. We know the values of Ni(x), as
these functions are chosen. The manner in which the unknown functions û is chosen depends
on which FEM formulation was used.

As the name would suggest, the formulation begins by modifying the residual

ε
h(x) = u−uh, ε

h→ 0, x ∈Ω (11.10)

with a set of weighting functions W i, where i = 1,2, ...,m. As with any numerical method,
the goal is to drive the residual towards zero. Knowing this, and scaling the residual with the
weight functions, the previous equation becomes∫

Ω

W i
ε

hdΩ = 0, i = 1,2, ...,m. (11.11)

If m is allowed to approach infinity, the residual satisfies the condition that it must tend towards
zero. Substituting equations 11.9 and 11.10 into the above equation yields∫

Ω

W i(u−N jû)dΩ = 0 (11.12)

How the weighting functions are chosen determines which WRM method is being used. The
Galerkin method was chosen here, and is obtained by making the following statement:

W i = Ni. (11.13)

By combining the above statement with equation 11.12, the weighted residual statement is
rewritten as ∫

Ω

Ni(u−N jû)dΩ = 0 (11.14)[∫
Ω

NiN jdΩ

]
û =

∫
Ω

NiudΩ, (11.15)

which is of the form

Mc · û = r. (11.16)

The matrix Mc is known as the consistent mass-matrix. By using the Galerkin WRM, the
matrix ends up being symmetric, which makes determining the values of Ni and N j simple.
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Linear Shape Functions

When choosing a method to assign known function values to the shape functions, Ni, and thus
determining the coefficient values for û, one key point must be first addressed. Determining
what these hat functions should be for a particular case in 2 and 3-dimensional space is difficult,
even for the simplest of geometries [58]. The Navier-Stokes solver developed here was done in
3-dimensional space. However, to first introduce these shape functions, 2-dimensional shape-
functions will be explained and illustrated.

Shape functions can be constant, linear, and even quadratic. Linear shape functions were
used in this formulation for a combination of accuracy and ease of implementation. A generic
linear shape function in 2-dimensional Cartesian space is given as

f (x,y) = a+bx+ cy. (11.17)

In order to circumvent the complexity of 2 and 3-dimensional geometries, it is useful to work
from a local standpoint rather than a global standpoint. Instead of operating on the entire
domain Ω, it is simpler to break this domain up into many discrete elemental domains, Ωel .
These finite elements, hence the name of the numerical technique, are useful, because solving
the integral from WRM in these sub-domains and summing them to approximate the entire
solution is easier than attempting to solve the integral over the entire domain at once. The
above equation has three unknowns, therefore it is necessary to use a 2-dimensional element
that has 3 nodes. The usual geometric object chosen is the triangle. Rather than examine all of
the triangular elements in a global x-y Cartesian space, a coordinate transformation is defined
for each local element. This is illustrated below.

A B

C

A
B

C1

1

𝜼

𝝃

Figure 11.1: Coordinate transformation to local triangular coordinates ξ −η .

Because there are 3 unknowns, and 3 nodes, Ni becomes NA, NB, and NC. When determining
what the value of these three functions are, one condition must be satisfied. That is, at each
node, the value of one of the functions must be equal to 1, and the other two must be equal to
zero. This yields

NA = 1−ξ −η , NB = ξ , NC = η . (11.18)
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These functions can be tested to ensure they satisfy the (1,0,0) requirement. When ξ and η

are both equal to zero, NA and NB are zero and NA is 1. When ξ is 1 and η is zero, NB is 1 and
the others are zero. Similarly, the same test shows that NC is 1 when η is 1 and ξ is zero.

Now that Ni is described in terms of known functions (for i = A,B,C), their derivatives can
be easily calculated, as they are constant over a single element. The Jacobian matrix of the
derivatives is represented by

J =
[

xBA xCA
yBA yCA

]
(11.19)

and its determinant is

det(J) = 2Ael = xBAyCA− xCAyBA. (11.20)

With this information, the shape function derivatives can now be calculated, which ultimately
will be useful when the finite element formulation is performed with the Navier-Stokes equa-
tions.  NA

NB

NC


,x

=
1

2A

 −yCA + yBA
yCA
−yBA

 ,

 NA

NB

NC


,y

=
1

2A

 xCA− xBA
−xCA
xBA

 (11.21)

The following expression sums up the idea that, with WRM, the goal is to split an integral over
some domain into a sum of the integrals over each elemental domain.∫

Ω

...dΩ = ∑
el

∫
Ωel

...dΩel (11.22)

So far, a 2-dimensional formulation has been used to describe the shape functions and
geometric finite elements (triangular elements). A similar procedure can be used for a 3-
dimensional formulation. The generic linear shape function polynomial for 3-dimensional
Cartesian space is given as

f (x,y,z) = a+bx+ cy+dz. (11.23)

There are four unknowns, therefore a geometric finite element with four vertices is needed.
The 3-dimensional equivalent to a triangle used in finite element method is the tetrahedron. A
similar global-to-local coordinate transformation is used for the tetrahedron.
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Figure 11.2: Coordinate transformation to local tetrahedral coordinates ξ −η−ζ .

In this instance, i will be 1−4. The same condition that must be satisfied that, at each vertex,
one of the shape functions is equal to 1 at the remaining three are equal to zero. This yields the
following shape functions:

NA = ξ , NB = η , NC = ζ , ND = 1−ξ −η−ζ . (11.24)

With the shape functions known, a similar procedure was used for 3-D space that was used
with 2-D to determine the Jacobian matrix, the determinant of the Jacobian, and ultimately,
the shape function derivatives. For the sake of brevity, the details of this procedure have been
omitted.

Navier-Stokes Formulation

Recall equation 11.1, the conservative, compact form of the Navier-Stokes equations:

u,t +∇(Fa−Fv) = 0. (11.1)

The Galerkin WRM, along with the ”hat-function” approximation, was applied to this set of
equations, resulting in the following formulation:∫

Ω

Ni [N j(û j),t +∇ · (Fa−Fv)(N jû j)
]

dΩ = 0. (11.25)

The following approximation was made, without much detriment to the accuracy of the results
[58]:

F(N jû j) = N jF(û j). (11.26)

Applying the WRM to the Navier-Stokes equations is easier to visualize if the system is
analyzed one piece at a time. First, consider the conservation of mass:

∂ρ

∂ t
+

∂ (ρv j)
∂x j

= 0. (11.27)

Now, a weighting function will be combined with the conservation of mass, and recall that for
the Galerkin method, the weighting function W i is set equal to the shape function Ni. To avoid
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notation confusion, α will replace i in the weighting function, and β will replace i in the shape
function. Applying this gives the following expression, where V is the volume of the domain
of interest. ∫

V
Nα

[
∂ρ

∂ t
+

∂ (ρv j)
∂x j

]
dV = 0, α = A,B,C,D (11.28)

The next step is to apply the ”hat-function” approximation to each component of the equation.

ρ(x,y,z) = ∑
β=A→D

Nβ (x,y,z)ρ̂β (11.29)

ρ̂β =


ρA
ρB
ρC
ρD

 (11.30)

What equation 11.30 is stating is that the density hat-function is an array made up of the
densities stored at the nodes of each tetrahedral element. Doing the same for the second term,

(ρv j)(x,y,z) = ∑
β=A→D

Nβ (x,y,z)( ˆρv j)β . (11.31)

Just as stated before, the function ( ˆρv j)β is an array of values of ρv j stored at the nodes of
each finite element. When equations 11.29 and 11.31 are substituted into equation 11.28, the
following equation is obtained:∫

V
Nα

[
∂Nβ ρ̂β

∂ t
+

∂Nβ ( ˆρv j)β

∂x j

]
dV = 0. (11.32)

Using the linearity principle, 11.32 was separated into two integrals. It is known that the shape
functions and their derivatives are constant and are not functions of time, therefore the ∂

∂ t was
taken out of the integrand. Also, the hat-function values are stored at the nodes and do not
change across the elemental volume, and were also taken outside of the integrand. The final
expression for the conservation of mass is in the form in which it was implemented into the
Navier-Stokes solver.

∂

∂ t

∫
V

NαNβ dV ρ̂β +
∫

V
Nα ∂Nβ

∂x j
dV ( ˆρv j)β = 0 (11.33)

Up to this point, the procedure has only been shown for the conservation of mass. The
same steps were taken with the conservation of momentum and conservation of total energy
equations. In shorter, verbal notation, the method described above can be explained in just a
few sentences. First, scale each of the equations, more specifically each term in each equation,
by the weighting function Nα and integrate over the volume. Then apply the ”hat-function”
approximation to each term; refer to equation 11.9. Substitute these approximations back into
the integral equations, rearranging and accounting for the fact that the time derivative can be
taken outside the integral. Knowing that the hat-functions do not change across dV , these can
also be taken outside the integral. What will be remaining is the formulation of each term
in each of the conservation equations that can be implemented discretely into the solver. To
discretize in time a two stage timestepping scheme that is second order in time [23].
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Asynchronous Parallel Methodology

Charm++ Parallel Programming System and Library

Quinoa was built on the Charm++ parallel programming system and library. Charm++, devel-
oped by the Parallel Programming Laboratory at the University of Illinois at Urbana-Champaign,
is founded on the migratable-objects programming model and the message-driven execution
model [43] The migratable-objects programming model provides high-level mechanisms to
facilitate the development of both task parallelism and data-parallelism within the same appli-
cation, while the message-driven execution model supports automatic latency tolerance in large
dynamic programs on inhomogeneous distributed clusters. Charm++ allows for asynchronous
parallel execution that enables arbitrary overlap of communication, computation, and input
and output (IO). Asynchronous programming constitutes a major paradigm shift in scientific
computing compared to the bulk-synchronous approach widely used in the message-passing
paradigm.

The main feature of the migratable-objects programming model is to enable and facilitate
overdecomposition in which the program is decomposed into a large number of data and work
units mapped onto available processors where the number of logical units is usually greater
than the number of processors. Under this programming model the programmer specifies com-
putation in terms of creating and interactions between these logical units but not in terms of
their specific location within the available processors. This feature allows the runtime system
to dynamically adapt the computational load based on realtime load imbalances due to soft-
ware (e.g. particle clustering, adaptive mesh refinement) or to hardware issues (e.g. dynamic
processor frequency scaling).

Figure 11.3: Each logical unit, or chare, is simply a C++ object containing data, functions,
and special globally accessible Charm++ functions called entry methods [66]. Figure source:
www.bhatele.org.

In Charm++, a program is decomposed into medium-grained data and work units called
chares. At its core a chare is just a C++ object containing data members, owned objects, pri-
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vate methods, and special globally accessible methods called entry methods (see Figure 11.3).
In a Charm++ program, computation is decomposed into a large number of chares that are dis-
tributed among the available processors that interact by performing asynchronous method invo-
cations on the special entry methods. This can be thought of as chares sending asynchronous,
one-sided ”messages” to globally accessible entry methods on other chares. Figure 11.4 shows
a diagram of how remote method invocation on a general Charm++ application would look like
to the programmer. To the programmer all chares reside in a global object space where there is
no direct reference to the processor on which each chare resides. The runtime system automat-
ically assigns chares to the available processors and can change these assignments at runtime
as necessary through object-migration. Figure 11.5 shows how a general Charm++ application
would look like after the runtime system assigns chares to processors. The key feature of the
message-driven execution model is to enable the program to maximize computing resources by
invoking an entry method only when a message for it arrives and allowing other processes to
take hold on that processor rather than block all other activity while waiting for incoming mes-
sages. This asynchronous style of parallelization is effective in hiding communication latencies
and is tolerant to software-induced load-imbalances and hardware-level noise.

Figure 11.4: To the programmer all chares reside in a global object space in which which
chares interact through remote method invocation without explicit reference to the processors
on which each chare resides [66]. Figure source: www.bhatele.org.

Finite Element Method with Overdecomposition

The asynchronous parallel strategy used by the finite element solver in Quinoa is to first de-
compose the domain, Ω, into nchunk sub-domains:

Ω =
nchunk⋃
i=1

Ωi (11.34)
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Figure 11.5: The runtime system automatically assigns chares to the available processors while
preserving the logical structure defined by the user [66]. Figure source: www.bhatele.org.

The number of sub-domains, nchunk, is derived from the degree of virtualization, ν , where
0.0 ≤ ν ≤ 1.0. Independent of the degree of virtualization the work is approximately evenly
distributed among the available processors. For ν = 0.0, that is no overdecompositon, the
domain is decomposed into the same number as there are available processors:

nchunk = #procs

A virtualization of zero yields the smallest number of Charm++ chares and the largest chunks
of work units. This would be similar to a traditional MPI program in which work is paral-
lelized into the same number of ranks as there are processors. For ν = 1.0, or the highest
level of overdecomposition the domain is decomposed into the smallest size sub-domains units
possible ranks as there are processors (see Figure 11.6). For ν = 1.0, or the highest level of
overdecomposition resulting in the largest number of work units. This would correspond to the
same number of sub-domains as there are elements:

nchunk = nel

For most simulations the ideal degree of virtualization will fall in between the two extremes. A
non-zero degree of virtualization, more chares will be present than the number of available pro-
cessors (see Figure 11.7). This allows the Charm++ runtime system to dynamically distribute
the large number of chares among the available processors based on realtime load imbalances
attributed to either inhomogeneity in the physics being solved or to inhomogeneous perfor-
mance of large distributed clusters.
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Figure 11.6: A mesh decomposed with zero virtualization. In this case there are 64 processors
and the mesh is decomposed into 64 chares. The different highlighted regions represent the
sub-domains assigned to each chare.

Figure 11.7: A mesh decomposed with non-zero virtualization. In this case there are 64 pro-
cessors and the mesh is overdecomposed into 213 chares. Each processor is assigned more
than one chare.
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Simulation Setup

Flow Solver Test Case

In order to check for coding errors and to test how well a solver has been implemented, it
is ideal to pick a simple test case. In this instance, the case of a cylinder in crossflow was
chosen. The geometry is simple enough such that the flow, and specifically the boundary layer,
is smooth, continuous, and mostly symmetric other than flow separation in the wake for higher
Reynolds number flows. Also, because this is case is simple and lends itself well to CFD code
testing, it has been studied thoroughly. This is beneficial, as a plethora of published results,
both computational and experimental, are available for verification and validation.

The toolkit CUBIT, created and maintained by Sandia National Laboratory, was used for
mesh generation. Several different meshes were used, with varying degrees of refinement
around the cylinder surface and downstream of the cylinder. Different time steps and values
for dynamic viscosity were also used to test the capabilities of the solver. By changing the
time step size and the number of elements, which changes the element size, the stability of
the solver was analyzed. The solver’s stability was also tested for different values of Reynolds
number. In the cylinder test case, the only solid boundary is the cylinder surface. By changing
the Reynolds number, the boundary layer effects are also changed. It is crucial to consider the
solver’s stability in these varying flow cases as well due to this issue. This is why optimization
between the time step size, the mesh refinement, and the flow field conditions is necessary. Be-
low are examples of some of the cylinder meshes used with different levels of mesh refinement.

Figure 11.8: Cylinder in crossflow mesh with 42,000 tetrahedral elements.
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Figure 11.9: Cylinder in crossflow mesh with 102,000 tetrahedral elements.

Load Imbalance with Lagrangian Tracer Particles

The main feature of the asynchronous Navier-Stokes solver is to be able to overdecompose the
domain into more sub-domains and subsequent chares than there are processors. This feature
will allow the Charm++ runtime system to dynamically distribute the large number of chares
among the available processors. However, this redistribution is only performed when there is a
high processor load imbalance either due to the the dynamic simulation physics or to hardware
level inhomogeneity. In order to test the object-migration capabilities that are at the core of
dynamic work redistribution additional work was added to the finite element solver in the
form of Lagrangian tracer particles. The additional work results from the implementation of
algorithms 11.1 and 11.2 in which algorithm 11.1 randomly generates the tracer particles in the
first time step and algorithm 11.2 then finds and advances the particles in subsequent time steps
where both algorithms use interpolation within the tetrahedral element (see Figure 11.10).

p

A

B

C

D

el

Figure 11.10: Particle interpolation within a tetrahedral element.

The interpolated position within any element is calculated as the sum of element nodal
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positions, xi, which are weighted by their respective shape-functions, Ni:

xp = ∑
i

Nixi (11.35)

where the sum-property of shape-functions states that:

∑
i

Ni = 1 (11.36)

Combining 11.35 and 11.36 yields a system of equations that relates the shape functions, ele-
ment nodal positions, and the interpolated positions [58]:

xp
yp
zp
1

=


x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1




N1

N2

N3

N4

 (11.37)

If the particle and element nodal coordinates are known then the shape-functions, Ni, can be
evaluated by solving 11.37. With the shape-functions evaluated the coordinates xi will be
within the element if:

min(Ni,1−Ni) > 0,∀i (11.38)

Algorithm 11.1 starts by generating three random shape-function values and enforcing
11.36 to evaluate for the fourth shape-function. If the condition in equation 11.38 holds true,
then the shape-functions are valid and the random particle coordinates are solved using equa-
tion 11.35. This procedure is done for every element, generating npar particles in each element.

Algorithm 11.1 Random Particle Generation [58].
input: Number of particles per cell npar, number of elements nel within the sub-domain
Ωi where Ω =

⋃nchunk
i=1 Ωi

output: npar particle locations xp, yp, zp ∀ elements e ∈Ωi
1: procedure PARTICLE GENERATION

2: for e = 1, ...,nel do
3: for p = 1, ...,npar do
4: Generate three random shape function values Ni where i = 1,2,3
5: Enforce 11.36 by solving N4 = 1−N3−N2−N1

6: if min(Ni,1−Ni) > 0 ∀ i then
7: Generate the random particle positions:
8: xp = ∑i Nixi for i = 1, ...,4
9: yp = ∑i Niyi for i = 1, ...,4

10: zp = ∑i Nizi for i = 1, ...,4
11: end if
12: end for
13: end for
14: end procedure
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The particles are generated using algorithm 11.2 during the initalization step. Once the par-
ticles are advanced at every timestep, all particles are searched using algorithm 11.2. Starting
with the particle positions, xp, and the element nodal coordinates, the shape-functions are eval-
uated using equation 11.37. Similar to the first algorithm, if the condition in equation 11.38 is
met then the particle, p, with coordinates, xp, resides within the element e. Once this condition
is met, the same shape-functions are used to interpolate for the particle velocities using a simi-
lar procedure as in equation 11.37. These are then used to advance the particles using a simple
Eulerian time step:

xp,new = xp +∆t∆vp (11.39)

where ∆vp is the difference the between the velocities at the current and previous time steps.

Algorithm 11.2 Particle Search and Advance [58].
input: npar particle locations xp, yp, zp ∀ elements e∈Ωi where Ω =

⋃nchunk
i=1 Ωi, tetrahedral

element node locations xi, yi , zi for the nodes i = 1, ...,4, and the tetrahedral element node
velocities vx,i, vy,i, vz,i for the nodes i = 1, ...,4
output: Element shape functions Ni for each node i = 1, ...,4, element e in which each
particle p resides, and the new particle locations xp,new, yp,new, zp,new for each particle p

1: procedure PARTICLE SEARCH AND ADVANCE

2: for p = 1, ...,npar do
3: for e = 1, ...,nel do
4: Solve the linear system for the shape functions:
5:

6:


xp
yp
zp
1

=


x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1




N1

N2

N3

N4


7:
8: if min(Ni,1−Ni) > 0 ∀ i then
9: The particle p is in the element e

10: Use shape functions to interpolate particle p’s velocity:
11:

12:


vp,x
vp,y
vp,z
1

=


vx,1 vx,2 vx,3 vx,4
vy,1 vy,2 vy,3 vy,4
vz,1 vz,2 vz,3 vz,4
1 1 1 1




N1

N2

N3

N4


13:
14: Update the particle coordinates using an Euler step:
15: xp,new = xp +∆t∆vp,x
16: yp,new = yp +∆t∆vp,y
17: zp,new = zp +∆t∆vp,z
18: end if
19: end for
20: end for
21: end procedure
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The addition and advancement of particles to the finite element Navier-Stokes solver will
not by itself induce inhomogeneity in the processors loads. However, for the case of a cylinder
in crossflow, the addition and advancement of particles will induce a processor load imbalance
through clustering of particles in certain regions. Figure 11.11 shows a cylinder in cross flow
domain in which there is one particle generated per element. At the initial time step there is a
large number of particles around the cylinder as there domain there is highly resolved. However
as the simulation advances in time the particles around the cylinder will flow downstream and
they will cluster near the centerline of the domain. For some Reynolds numbers the cylinder in
crossflow will produce vortex shedding which create a highly dynamic clustering of particles
in the wake of the cylinder. A computation setup such as the one presented will have a high
propensity to cause dynamic and inhomogeneous processor load imbalance and will well-suited
to test the main features of the Charm++ runtime system.

Figure 11.11: Domain with 1 particle generated per element. As the particles are advanced
with the flow there will be clustering and thus inhomogeneous load on the processors.
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Simulation Results

Flow Solution

The flow solver was ran using various combinations of time step sizes, number of mesh ele-
ments, and Reynolds number. For the time step size, the range was from 1e−03 to 1e−06. The
range for the number of elements was 5,000 to 90,000, and the range for Reynolds number
was from 1 to 200. The solution field for a Reynolds number of 1 using a 5,000 element mesh
with a time step size of 1e−04 is shown below.

Figure 11.12: Cylinder in crossflow velocity streamlines for Re = 1

Figure 11.13: Cylinder in crossflow velocity streamlines for Re = 1

From a qualitative standpoint, the velocity field appears to be as it should. Far upstream and
downstream of the cylinder, the velocity is similar to that of the inlet velocity. As the flow
approaches the leading edge of the cylinder, it slows down and approaches zero at the cylin-
der surface. The flow is zero circumferentially around the entire cylinder surface. Within the
boundary layer, the flow is slower than the freestream velocity. Lastly, as flow goes around the
cylinder, it begins to accelerate.

This is a work in progress. The numerical solution of the flow equations have been imple-
mented using one of the simplest numerical schemes. There are no stabalizing terms (artificial
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viscosity) or limiting that have been implemented yet. Another obvious next step is semi-
implicit timestepping. The advancement, search, parallel communication and parallel IO of
the particles have all been implemented. However, we had no time to excercise the automatic
load balancing feautures of Charm++ due to particle migration.

Overdecompostion

It has already been shown that the solver successfully overdecomposes the mesh, resulting in
a larger number of working objects than physical CPU cores. The idea of overdecompostion
is too allow for these additional working objects to be migrated when necessary. However, it
was also tested how useful overdecomposition is in instances when load imbalances due not
occur. Varying mesh sizes were ran with a varying number of physical CPU cores and degree
of virtualization to see what effects overdecompostion would have in general. The following
figure illustrates the effect of overdecompostion.

Figure 11.14: Effects of overdecomposition on total runtime

It can be seen that large reductions in wall clock time are possible when using virtualiza-
tion, regardless if load imbalances occur. Referring to the 4 CPU case in figure 11.14, which
could represent a common use case of running the solver on a quad-core laptop, utilizing the
virtualization built into a code can allow for significantly reduced runtimes. This poses as won-
derful news, as running computationally intensive programs on laptops can often prove to be a
sluggish experience.

Even though figure 11.14 shows a limit to how much virtualization is actually beneficial,
this is accounting for the total wall clock time. This includes setup and domain decomposition,
along with the computational time related to time stepping the solver. For very large instances
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of virtualization (> 0.8; chares
CPUs > 5), there exists a large overhead associated with the decom-

postion of the mesh. If, however, only the computational time is considered, the results are
slightly different. That is to say, if only the time to iterate through the time steps is viewed,
these ”limits” change. The following results disagree with those from figure 11.14 when virtu-
alization is larger than 0.8.

Figure 11.15: Effects of overdecomposition on time-stepping runtime

Figure 11.15 illustrates that high degrees of virtualization can yield a large improvement in
performance. There are a couple of caveats when considering whether or not to run the solver
with virtualization. One of the first obvious ones is deciding how many time steps is necessary
for the setup time to be ”relatively insignificant.” The second is that for certain mesh sizes, the
communication cost for any amount of overdecomposition greater than zero is always slower.
Determining the relationship between the mesh size, number of physical cores, and degree of
virtualization is not so trivial. This relationship is governed by how much CPU cache is avail-
able and the varying memory requirements for the chunks of mesh. Ideally, each chunk of mesh
should exactly fill the CPU cache. If the chunk does not fill the cache, then storage is being
wasted, and the solver is running inefficiently. If the storage requirement for the chunk of mesh
is larger than the cache, then communication to the RAM is necessary, which slows the com-
putation. Currently, the best method in determining this optimum degree of virtualization for a
given mesh size is simply trial and error. The same can be said for determining the appropriate
number of time steps required for large amounts of virtualization to be beneficial. Note that
the performance improvement, quantified on figures 11.14 and 11.15, is solely due to relaxing
the equality between the MPI ranks and number of mesh partitions. Moderate degrees of vir-
tualization results in performance degredation, as expected. However, very counterintuitively,
even larger degrees of virtualization may increase performance drastically (in this case 47x).
We hypothesize the smaller mesh partions due to large degrees of virtualization completely fit
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the cache.

Conclusions
An asynchronous Navier-Stokes solver has been implemented. This is a work in progress,
advanced solver features (limiting, semi-implicit timestepping) will be added in the near future.
The Lagrangian tracer particles were added for two reasons. The first reason being that they
were to serve as a load imbalance mechanism, and the second being that Quinoa will eventually
have turbulence modeling capabilities, which will be solved using particle based methods.
Because of issues with the solution technique to the Navier-Stokes equations, no testing was
done to see whether or not the solver could successfully migrate objects and perform automatic
load balancing. The goal of completing the future work mentioned above is to allow the solver
to run in such a way that the automatic load balancing can be tested. Other future work that
is to be done is the addition of adaptive mesh refinement (AMR). Rather than use Lagrangian
tracer particles to force a load imbalance, AMR will be implemented as it is useful in a flow
solver, but also because it will inherently create load imbalances. This is a practical mechanism
to include in the solver to test the implementation of the automatic load balancing.

One important discovery that was made while running and testing the solver was how use-
ful overdecomposition can be, even without the issue of load imbalances and migrating objects.
When the number of chares is paired well with the size of the finite element mesh (paired well
referring to the cache issued mentioned previously), large reductions in computational cost can
be achieved. Other future work could likely include this addition of an algorithm that reads
the amount of CPU cache, determines how many elements a mesh chunk needs to contain to
perfectly fill the cache, and then chooses the degree of virtualization based on this approxi-
mation to maximize efficiency. The evidence suggests that asynchronous parallelization and
domain overdecomposition are beneficial coding methods that can help decrease the computa-
tional cost of an otherwise ”run of the mill” flow solver. Future work includes adaptive mesh
refinement and a Lagrangian particle-based turbulent flow solver.
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Abstract

The turbulent mixing of fluids is an important process in many practical applications.
If the densities of the fluids being mixed are significantly different, the flow is said to be
a variable density (VD) flow. VD flows have been well studied in the binary case N = 2;
however no direct numerical simulations have been performed for VD flows with greater
than 2 species. This project initiates the first study of the turbulent VD mixing between
N greater than 2 species. Here, we concentrate on developing correct initial conditions to
allow future simulations to study the physics in greater detail.
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Motivation
Turbulent mixing arises in a variety of engineering applications and physical phenomena. For
example, Professor John Kim of UCLA has said in his lectures on turbulence that without the
effects of turbulent mixing, you would have to wait all day to stir your sugar into your coffee.
That example proves the importance of understanding the physics of turbulent mixing in both
everyday life and in science in general.

However, turbulence has proved difficult to predict in its exact details. So far, only experi-
ments and direct numerical simulations had been able to predict turbulence beforehand. Direct
numerical simulations are simulations that capture all the relevant length and time scales of a
problem, so they are costly but they do generate a substantial amount of data about turbulence.
In the case of turbulent mixing, numerical simulations have proved invaluable due to their abil-
ity to repeat a simulation from exactly the same initial condition, a difficult procedure in an
experiment.

Direct numerical simulations are costly, and for that reason much effort is put into develop-
ing accurate turbulence models that arrive at sufficiently decent answers quickly and cheaply.
These models often come in the form of RANS models, which seek to close the unclosed terms
in the Reynolds-averaged Navier-Stokes equations (or, in this case, the Favre-averaged Navier-
Stokes equations). An example of a modern RANS model designed to model turbulent mixing
is described in [73].

Previous numerical studies of turbulent mixing have concentrated on the binary case —
that is, the case when there are only 2 fluids mixing together. The binary case is reviewed in
[57], with emphasis placed on the Rayleigh-Taylor instability. The Rayleigh-Taylor instability
generates turbulence from an unstable density stratification — a more dense fluid lying above a
less dense fluid, with gravity pulling the fluids from below. This arrangement readily generates
turbulence and serves as the large-scale energy source for the energy cascade in the turbulence
simulations described here.

The binary case has been steadily explored, and we now know much about it. Similarity
for the binary case is controlled by many parameters, but the Atwood number quantifies how
unstable a density arrangement is. The Atwood number is

At =
ρ2−ρ1

ρ1 +ρ2
, (12.1)

where ρα are pure fluid densities (intensive densities) and ρ2 > ρ1. We should expect two
simulations with the same Atwood number to behave similarly. Note that 0 ≤ At ≤ 1. When
At≈ 0, the arrangement is said to be Boussinesq, while if At� 0, the arrangement is variable
density. Both regimes have been studied extensively for the two fluid case.

The three fluid case, however, has not been studied; this work serves as the first preliminary
research into it. Several aspects of this case are unknown and may differ from the binary
case. Instead of a single Atwood number characterizing the problem, we now have 3 Atwood
numbers, and the number of Atwood numbers grows quadratically with the number of species.
This growth signifies the increased complexity in arranging the species initially as well. For
the binary case, we can expect to divide the domain into a region with one species and a region
with another species, with a single interface between the two. Now, in the three fluid case (and
beyond), the arrangement becomes less obvious, and we have much arbitrarity we can exploit
or fall prey to. These questions remain open and we hope to begin to answer them here.
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Initial condition generation
The primary difficulty in extending the DNS from 2-species to N-species is in the generation
of the initial condition. The previous IC generation algorithm filled in the volume with random
values using a broadband spectrum, applied a Fourier transform across the domain, imple-
mented a low-pass filter, and performed a reverse transform. This created random structures
with a length scale determined by the parameters of the low-pass filter. From the resulting
random scalar field, points with positive values were assigned to one species, while negative
values were assigned the other. While this method is suitable for the binary case, it does not
extend well to N fluids. Although it is possible to change only the species assignment step of
this algorithm by defining mutually exclusive and exhaustive numeric intervals for each species
by which they are to be assigned, this does not generate desirable a shape or positioning of the
structures. Furthermore, it is difficult to ensure volume conservation between the species.

In order to solve this issue, we developed another IC generation algorithm. Our algorithm
first seeds the volume by placing some number of initial points randomly throughout the space.
The number of initial seed points is some multiple of the number of fluid species, as determined
by a quantity we define as the “virtual factor,” equal to the number of additional seed points
after the first given to each species. Each initial point is given its own index. On every iteration
of the algorithm, every point is checked to see if it has been assigned. If it has, all unassigned
adjacent points in each dimension are assigned to the same index. This allows the seeds to
organically grow into contiguous regions which fill the volume. The boundary conditions of
the volume are periodic, so the structures grow across opposing faces of the cube. Each index
is given a limited number of points to which it is allowed to spread. This ensures that each
index grows to an equal volume. If there has been no change in the number of assigned points
between two iterations of the algorithm, an arbitrary unassigned point is selected and assigned
to the index with the fewest number of assigned points at the time of that iteration. This enables
any voids that may develop between regions which cannot grow any longer to be filled. Once
every point in the space has been assigned, each virtual index is mapped at random to one of
the N real species, resulting in the initial condition for the simulation.

Pictured below (figure 12.1) are snapshots of the algorithm in action for 3 species in a 2
dimensional space. The results from this figure were generated by a Python script written to
prototype the algorithm.
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(a) Iteration 1 (b) Iteration 3 (c) Iteration 5

(d) Iteration 7 (e) Iteration 9 (f) Final (iteration 238)

Figure 12.1: Example of initial condition generation in 2 dimensions with 3 species

This IC generation algorithm satisfies 5 important requirements:

1. It is extendable to N-species.

We can generate initial conditions for arbitrary numbers of fluids without making any
changes to the algorithm.

2. It is volume conserving.

We can directly control the proportion of the total volume occupied by each of the fluids.

3. It enables control over the length scales of the generated structures.

Changing the “virtual factor” will adjust the number of initial seed points used by the
algorithm. A higher number of seed points will result in a greater number of contiguous
regions. If the volume is unchanged and the number of regions is increased, each indi-
vidual region will be smaller. Thus, the “virtual factor” determines the average length
scale of the regions.

4. It is periodic.

The DNS code that we used has periodic boundary conditions. Thus, it is desirable for
the IC to be periodic as well. This is not an issue for our algorithm.

5. It results in the development of turbulence.

The most important of these requirements, our algorithm results in structures which do
transition to turbulent flow. This will be further discussed in the Results section.
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Results
After testing a prototype for the initial condition generator written in Python, we implemented
the initial condition generation algorithm in the existing Fortran code and ran a simulation with
3 species based on this algorithm. Some of the parameters for this simulation are given in table
2.

Table 2: Simulation parameters
Name Grid At IC

3-fluid 2563 1
5 , 1

3 , 1
2 Non-parallel

However, the Fortran algorithm as implemented for this simulation does not completely
fulfill the periodicity requirement. The DNS code operates in parallel, and decomposes the
domain into rectangular boxes, with the data for each box accessible only by the processor
assigned to it. This decomposition works well to parallelize the dataset and decrease the time it
takes for a simulation to run, but it poses some initial difficulty in implementing the algorithm,
since the algorithm would require a substantial amount of message passing between each box.
So, at first, we merely implemented the algorithm correctly on each subdomain. Each subdo-
main is perfectly periodic, but the overall domain is not. This choice gave us time to get results,
and we are working to parallelize the algorithm to fulfill the periodicity requirement.

Figure 12.2 depicts the time-evolution of the simulation by visualizing a single slice of the
flow. Here, we can draw some conclusions about the initial condition generation algorithm.
The regions (blobs, really) of pure fluids are clearly non-rectangular and occur in many differ-
ent shapes. However, due to this implementation’s lack of parallelization, the initial condition
displays a subdued 4-by-4 grid.3 However, this lack of periodicity disappears quickly, and
qualitatively the simulation appears to transition to turbulence (we will discuss more of that
later).

Let’s now concentrate more on the initial condition, but in a more quantitative manner. The
previous 2-fluid initial conditions were designed to have a peak in the density spectra around a
wavenumber of k ≈ 6. The new algorithm should also possess this property, with the “virtual
factor” being the control to ensure that the algorithm fulfill this property. Figure 12.3 shows
the spectra for the initial condition’s density field, and the peak is actually at a wavenumber of
k ≈ 7, so the algorithm, as currently implemented, does fulfill this property.

This preliminary simulation served to test that the algorithm can produce initial conditions
that can (on top of the other previously requirements) transition to turbulence. Previously,
we saw that snapshots of this simulation revealed that it does appear turbulent — the initial
condition disintegrates into a torrent of swirls and eddies and plumes, some rising and some
sinking under gravity. However, we can quantiatively verify that it displays some properties of
turbulent flow to confirm this suspicion.

First, let’s look at the turbulent kinetic energy in the flow (figure 12.5a). The turbulent
kinetic energy is defined as

k ≡ 1
2u′iu

′
i , (12.2)

3This simulation was run on 64 processors, so the domain was decomposed into 64 cubes, with 16 being
visible in each slice.
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(a) IC (b) Snapshot 10 (c) Snapshot 20

(d) Snapshot 30 (e) Snapshot 40 (f) Snapshot 50

(g) Snapshot 60 (h) Snapshot 70 (i) Snapshot 80

(j) Snapshot 90 (k) Snapshot 100 (l) Snapshot 110

Figure 12.2: Screenshots of a slice of the 3-fluid simulation, gravity pointing down
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Figure 12.3: Density spectra for the initial condition of the 3-fluid simulation

Figure 12.4: Results from the 3-fluid simulation
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(b) Energy spectra (final timestep)

where u′i is the velocity fluctuation in the i-th direction. Initially, there is no flow, so there is
no turbulent kinetic energy. However, after a transition period, some turbulent kinetic energy
is produced and the flow enters a decay phase. This figure demonstrates that the various insta-
bilities in the flow (of differing strength) are strong enough collectively to perturb the flow into
another state.

Though the turbulent kinetic energy can tell us that some motion has been produced and
that the motion is decaying, it does not, however, verify that that the state itself is a turbulent
flow. To verify that the flow is in fact turbulent, we need to verify that the energy spectra of
the velocity fluctuations obeys the Kolmogorov spectrum of k−5/3. When this spectra appears,
it indicates the presence of an inertial subrange, and that the flow is turbulent in the sense of
Kolmogorov’s 1941 theory.

Figure 12.5b plots the spectra for the two-point autocorrelation functions. The dotted line
represents the Kolmogorov spectra. We do see that E11 is parallel to the Kolmogorov spectra
for a definite (though short) range of wavenumbers. Given the low Reynolds number of this
simulation, this small separation of scales is roughly all we should expect, and this evidence

Final Reports: 2016 Computational Physics Student Summer Workshop Page 131



Direct Numerical Simulations of Multi-Species Variable-Density Turbulence

confirms that the flow has become turbulent.

Future work
The work described here concentrated on developing functional initial conditions for N species
turbulence simulations. In general, it has succeeded to generate working ICs, but some work
remains.

The algorithm for initial condition generation described here generally works well to create
N species initial conditions. However, we are still implementing it on multiple processors in
the way that preserves perfect periodicity. As a result, the current Fortran implementation
actually performs independent work on each processor, destroying the overall periodicity that
the algorithm employs. This problem is in the implementation, not in the algorithm itself.
Nevertheless, this issue does not prevent the implementation from working overall, but it does
violate one of the goals for our algorithm. The most important step to implement is to add
message passaging so that the Fortran implementation works on the entire domain rather than
independently on each processor.

After this final step to implement the initial condition generation algorithm, work should
concentrate on determining the differences between the binary case and the N-species cases.
This work is the ultimate long-term goal of this project.
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Abstract

This project examines the use of a Runge-Kutta-Legendre (RKL) super-time-stepping
method to solve the partial differential equations of level set detonation shock dynamics.
First and second order RKL schemes were implemented in existing detonation shock dy-
namics code and simuluations comparing the RKL methods to traditional forward Euler
and second order Runge-Kutta schemes were run and shown to decrease run time by a fac-
tor of 4 for relatively course meshes with the benefits only increasing as spatial resolution
decreases resolution while maintaining the same solution accuracy.
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Introduction
This work explores the potential application of super-time-stepping, in the form a Runge-Kutta-
Legendre (RKL) method, to detonation shock dynamics. Scientists are interested in modeling
detonation shock dynamics for several reasons including modeling combustion combustion
processes and high explosives for applications in defense, aerospace, and mining [8, 50] Tra-
ditionally, the time domain aspect of detonation shock dynamics is solved using an explicit
forward Euler like scheme. However, if a high mesh resolution is desired, as is often the
case when describing the reaction zone of high explosives, this scheme can become extremely
costly as the stable time increment is a function of the spacial resolution squared. Super-time-
stepping seeks to address this problem by replacing the traditional forward Euler scheme with
a Runge-Kutta like scheme that allows for larger stable time steps [83, 1].

This work begins by first providing an overview of detonation shock dynamics and the level
set method used to describe the evolution of a shock wave through high explosives. Secondly,
the Runge-Kutta-Legendre method is introduced and its application to solving the partial dif-
ferential equations presented by the level set method of detonation shock dynamics. Once the
RKL method and its application to detonation shock dynamics were implemented via existing
detonation shock dynamics code, several test simulations were run with a wide range of pa-
rameters and geometries to examine the effectiveness of the RKL method. Section displays
the ability of the first order with an upwind spatial solver, and the second order RKL methods
to match the results of a forward Euler solver to within 1 percent. Ultimately, while vigorous
testing is needed a more efficient time-stepping scheme has been presented allowing users of
DSD codes a more efficient method of achieving simulation results to the desired accuracy.

Detonation Shock Dynamics

Basic Theory

Detonation shock dynamics (DSD) is the theory which describes the evolution of a curved
shock wave in high explosive (HE) material after detonation. Specifically, this theory attempts
to capture the dynamics of a Chapman-Jouguet (CJ) detonation; that is, a detonation whose
speed corresponds to a sonic state at the end of the reaction zone. The normal speed for such a
detonation is denoted DCJ .

The theory of DSD relies on the assumption that the length of the reaction zone is much
smaller than the radius of curvature of the shock wave traveling through the explosive and that
the velocity Dn normal to the detonation front is a function of the local curvature κ of the front.
Obtaining this relationship between Dn and κ is of particular importance; the relationship itself
is often referred to as the Dn−κ law [7]. In our notation, the normal vector to the front point
towards unreacted explosive and κ > 0 corresponds to diverging detonation wherein the shock
wave takes a convex shape and Dn < DCJ . Conversely, κ < 0 denotes a converging detonation
with an concave front and Dn > DCJ . For our purposes, we assume Dn− κ law so that Dn
decreases monotonically as κ increases and κ = 0 gives Dn = DCJ . More explicitly, we take

Dn−DCJ−α(κ)

where α is a monotonically increasing function with α(0) = 0. The exact form of α is a
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property of the specific HE being detonated. For simplicity, α is usually taken to be a rational
function of κ[7].

Boundary Conditions

Figure 13.1: Definition of ω ,~ns and~nb

A typical DSD experiment involves filling
some inert container with HE and detonat-
ing at desired points. An important feature
of such an experiment is the interaction of
the exploding particles with the boundary;
i.e., the interface between explosive mate-
rial and inert material. The boundary con-
ditions applied to the model depend on the
flow type (characterized by the sonic param-
eter S ) which in turn depends on the angle
ω between the normal to the boundary~nb and
the normal to the detonation front ~ns at the
point of intersection with the boundary (Fig.
1). The parameter S is given by

S = C2−U2
n −D2

n cos(ω)

where C is the sound speed in the explosive, Un is the explosive particle velocity in the direction
normal to the detonation front and Dn is the normal speed.

If S < 0 then the flow is locally supersupersonic at the edge and no boundary condition is
applied since the shock wave is moving too rapidly for the presence of an edge to influence the
reaction. In practice, to apply no boundary condition, all information is simply continued from
the interior to the exterior of the domain which is accomplished using ghost nodes.

In the case that S > 0, the flow is subsonic. In this case, there are two different situations
to consider. If the pressure induced in the inert material is below that immediately behind the
detonation front, then the confinement has no influence on the detonation and the shock wave
travels as if it is unconfined. If the pressure induced in the inert material is greater than that
immediately behind the detonation front, then there is a reflected wave which can re-enter the
reaction zone resulting in an increase in pressure therein.

Level Set Method

The level set method is a powerful tool for modeling the propagation of curved interfaces. We
describe the application of the method to DSD.

The level set method models a propagating interface as the level set of a smooth field
function ψ . We develop the theory in two spatial dimensions; the extension to n dimensions is
straightforward. For our purpose, the level set ψ(x,y, t) = 0 represents the detonation front at
time t. Thus, fixing time t, if ψ(x,y, t) < 0 then the explosive at location (x,y) has already been
burned, whereas ψ(x,y, t) > 0 implies that the explosive at location (x,y) is as yet unreacted.
Since level curves are, in general, given by ψ(x,y, t) =constant, we can take the total derivative
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to arrive at
∂ψ

∂ t
+

∂ψ

∂x
dx
dt

+
∂ψ

∂y
dy
dt

= 0.

Defining the surface velocity D =
(

dx
dt ,

dy
dt

)
, we can re-write the above

∂ψ

∂ t
+∇ψ ·D = 0.

Another simple manipulation gives

∂ψ

∂ t
+
(

∇ψ

|∇ψ|
·D
)
|∇ψ|= 0.

From here, we note that if ψ defines the propagating surface, then ∇ψ/|∇ψ| is the normal~n to
the surface. Using this observation, the above equation becomes

∂ψ

∂ t
+(D ·~n)|∇ψ|= 0 =⇒ ∂ψ

∂ t
+Dn(κ)|∇ψ|= 0.

Recalling our Dn−κ law, we arrive at

∂ψ

∂ t
+DCJ|∇ψ|−α(κ)|∇ψ|= 0. (13.1)

This final equation is the one that we ultimately solve numerically [7].

Numerical Implementation

We let {xi},{y j} be a spatial discretization of our domain and {tn} be a time discretization
(with stepping parameters ∆x,∆y and ∆t respectively). If ψn

i, j is a numerical approximation to
the solution at (xi,y j, tn) then perhaps the simplest numerical implementation of (13.1) would
use forward Euler time stepping:

∂ψ

∂ t
−→

ψ
n+1
i, j −ψn

i, j

∆t
.

To construct a basic upwind difference scheme for |∇ψ| we first need to approximate ψx and
ψy. We use all four surrounding nodes to approximate these at (xi,y j):

D+
x ψn

i, j =
ψn

i+1, j−ψn
i, j

∆x , D−x ψn
i, j =

ψn
i, j−ψn

i−1, j
∆x ,

D+
y ψn

i, j =
ψn

i, j+1−ψn
i, j

∆y , D−y ψn
i, j =

ψn
i, j−ψn

i, j−1
∆y .

We combine these to form the first order upwind approximation

|∇ψ| −→ [ f (D+
x ψ

n
i, j)+g(D−x ψ

n
i, j)+ f (D+

y ψ
n
i, j)+g(D−y ψ

n
i, j)]

1/2

where

f (a) =
{

a2, if a < 0,
0, if a≥ 0;

g(a) =
{

a2, if a > 0,
0, if a≤ 0.
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If the grid is deformed in any way, we can still calculate the gradient this way, we simply need
to account for the deformation using the Jacobian matrix. These are sufficient to implement
the first two terms in equation (13.1).

For the last term in equation (13.1), we use ψ to determine the curvature of the front. For
example, in two dimensions and Cartesian coordinates, we have

κ =
ψxxψ2

y −2ψxyψxψy +ψyyψ2
x

|∇ψ|3
.

The expression will be more complicated in different coordinate systems, but they will always
depend on the second partial derivatives of ψ. These are always calculated using centered
differences which give second order discretizations.

Looking at the structure of the equation, we see that the first spatial term in (13.1) is hy-
perbolic while the second is approximately parabolic. This can present a problem with the
stability conditions. In the case that ∆x = ∆y, performing the analysis reveals that the stability
condition for the hyperbolic part is the CFL type condition

c1
∆t
∆x
≤ 1

for some constant c1 while the stability condition for the parabolic part is the much more
stringent condition

c2
∆t

(∆x)2 ≤ 1

for some constant c2. For small ∆x, to satisfy both conditions we are obligated to take ∆t on
the order of (∆x)2.

Due to this, the time step required for stability may be prohibitively small causing one
to choose between spatial resoution which is too coarse to capture all the dynamics of the
system or a time step small enough to significantly increase the runtime of the code. There
are several methods to circumvent this problem. In the next section, we discuss the application
of particular super-time-stepping methods to the numerical implementation of the level set
method for DSD.

The Runge-Kutta-Legendre Method

Super-Time-Stepping

A vast number of physical processes (most famously: heat transfer) are modeled using parabolic
partial differential equations (PDE) or PDE which are at least partially parabolic (such as the
level set method for DSD presented above). Modeling of most interesting processes require
non-linear PDE which, for the most part, are not amenable to analytic methods which is why
we turn to scientific computing and numerical analysis.

There is no consensus as to which time-stepping methods are most useful for parabolic
PDE. Explicit methods are simple to implement and can be made as accurate as desired but
often times a stability condition requires an exceptionally small time step. Implicit methods
typically have much more preferable stability properties but the implementation (especially for
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non-linear problems) is more complicated and the methods are less robust, often requiring ad
hoc considerations for different problems.

Super-time-stepping (STS) methods are explicit time-stepping methods which attempts to
bypass the prohibitive time step restrictions for parabolic operators. Since these are explicit
methods, often times they fall into the category of Runge-Kutta (RK) methods, though there
are certainly STS methods which are not RK methods (such as operator splitting methods).
The STS methods we employ are of the former type. Specifically, we consider stabalized
RK methods; that is, RK methods where the coefficients are chosen so as to maximize the
stability region along the negative real axis and thus maximize the permissable time-step which
guarantees stability. This is in contrast with classical RK methods in which coefficients are
chosen to establish the highest possible level of accuracy [63].

To describe our methods, we consider the equation

du
dt

= Mu

where M is the discretized version of some parabolic operator. A general s-stage RK method
has an associated polynomial Rs so that advancing the time from t to t + τ corresponds to
applying the operator Rs(τM):

u(t + τ) = Rs(τM)u(t). (13.2)

The scheme is then stable if |R(τλ )| ≤ 1 for all λ between 0 and the maximum (negative)
eigenvalue of M.

The exact solution to the equation is of course given by

u(t + τ) = eτMu(t) =
(
1+ τM + 1

2(τM)2 + · · ·
)
u(t). (13.3)

We can achieve the desired order of accuracy but choosing coefficients to force the stability
polynomial to match terms of the Taylor series for the exponential.

Runge-Kutta-Legendre Method at First Order

Runge-Kutta-Legendre (RKL) methods exploit the Legendre polynomials to create a stable RK
scheme. The Legendre polynomials are strictly bounded by 1 when the arguement is in (−1,1).
The RK parameters are chosen so that

Rs(z) = as +bsPs(w0 +w1z)

where as,bs,w0,w1 are to be chosen and Ps is the sth Legendre polynomial. In fact, w0 is a
damping parameter which is not necessary for RKL schemes so we can take w0 = 1 and for
first order accuracy, we can take as = 0. Then for consistency at first-order, we need Rs(0) =
R′s(0) = 1 so bs = 1 and w1 = 2/(s2 + s) giving

Rs(z) = Ps

(
1+

2
s2 + s

z
)

.
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We also require stability at the intermediate RK stages; indeed, we choose parameters so that

Y j = Pj

(
1+

2
s2 + s

)
un

where un is the approximation to u at some time tn and Yj is the jth stage towards an approx-
imation to u at time tn+1. To accomplish this, we recall that the Legendre polynomials satisfy
the recursion

jPj(x) = (2 j−1)xPj−1(x)− ( j−1)Pj−2(x)

so

Pj

(
1+

2
s2 + s

)
=

2 j−1
j

(
1+

2
s2 + s

)
Pj−1

(
1+

2
s2 + s

)
− j−1

j
Pj−2

(
1+

2
s2 + s

)
.

Using this recursion, we can write an RK scheme which has the desired stability polynomial
[62]. The first order Runge-Kutta-Legendre (RKL1) scheme is given by

Y0 = u(t)
Y1 = Y0 + µ̃1τMY0

Yj = µ jYj−1 +ν jYj−2 + µ̃ jτMYj−1 (2≤ j ≤ s)
u(t + τ) = Ys

with parameters

µ j =
2 j−1

j
, ν j =

1− j
j

,

µ̃ j =
2 j−1

j
2

s2 + s
.

The maximum allowable τ is then

τ =
∆t f e

w1
=

s2 + s
2

∆t f e

where ∆t f e is the maximum stable time-step if one were to advance time using forward Euler.
Thus the decrease in number of time steps becomes more pronounced as s becomes larger. We
discuss later how we choose s optimally.

Runge-Kutta-Legendre Method at Second Order

We can alter our above scheme slightly for second order accuracy. We may still take w0 = 1,
corresponding to an undamped system. Comparing (13.2) and (13.3), we see that second order
accuracy requires Rs(0) = R′s(0) = R′′s (0) = 1 whence we take

bs =
P′′s (1)

(P′s(1))2 =
s2 + s−2
2s(s+1)

, as = 1−bs, w1 =
P′s(1)
P′′s (1)

=
4

s2 + s−2

Final Reports: 2016 Computational Physics Student Summer Workshop Page 139



Exploration of Super-Time-Stepping for Detonation Shock Dynamics

for s ≥ 2. We are free to choose b0 = b1 = b2 = 1/3. After exploiting the recurrence relation
for the Legendre polynomials and performing the requisite algebra, this leads to the following
RK method (which we henceforth refer to as RKL2) [63]

Y0 = u(t)
Y1 = Y0 + µ̃1τMY0

Yj = µ jYj−1 +ν jYj−2 +(1−µ j−ν j)Y0 + µ̃ jτMYj−1 + γ̃ jτMY0 (2≤ j ≤ s)
u(t + τ) = Ys

where

µ j =
2 j−1

j
b j

b j−1
=

(2 j−1)( j +2)( j−1)2

j( j−2)( j +1)2

ν j =
1− j

j
b j

b j−2
=− ( j−1)3( j2−4)

j3( j +1)( j−3)

µ̃ j = µ jw1 =
(2 j−1)( j +2)( j−1)2

j( j−2)( j +1)2
4

s2 + s−2
, µ̃1 = b1w1 =

4
3(s2 + s−2)

γ̃ j =−a j−1µ̃ j =−( j−1)( j +2)(2 j−1)( j2− j +2)
2 j2( j−2)( j +1)2 .

Here the maximum allowable time-step is

τ =
∆t f e

w1
= ∆t f e

s2 + s−2
4

.

We note that for RKL2, the maximum allowable time-step is slightly smaller than that for
RKL1 (for large s, the time-step for RKL2 is roughly half of that for RKL1) but still grows as
s grows.

Choosing the Optimal s

In the level set method applied to DSD, we have a hyperbolic/parabolic system. Often times
for such systems (as is the case with ours), we arrive at two separate time-step restrictions
for stability: the maximum hyperbolic step ∆thyp and the maximum parabolic step ∆tpara. For
finer spatial meshes, ∆tpara (being proportional to the square of the spatial mesh parameter) will
be much smaller than ∆thyp. To maximize efficiency, we want to take τ (our superstep) to be
roughly equal to ∆thyp so we choose the smallest s such that τ > ∆thyp/2. Thus, for RKL1 we
choose

s =

⌈
1
2

(√
1+8

∆thyp

∆tpara
−1

)⌉
and for RKL2

s =

⌈
1
2

(√
9+16

∆thyp

∆tpara
−1

)⌉
.
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Figure 13.2: A depiction of the slab geometry used in the simulations. The shock wave starts
at the left edge and propagates through to the right.

Simulations
Numerous ”shock-tube” simulations where run in 2 different geometries (Figures 13.2 and
13.3) over a wide range of parameters. The parameters varied included the type of detonation
(circle detonation, plane wave, colliding waves), inner and outer radii for the arc-waves, spatial
solver and nodal resolution. Figures 13.4 and 13.5 display the parameters that were varied for
the study. For each simulation run, 4 different time-stepping algorithms were used, forward
Euler (FE), 2nd Order Runge Kutta (RK2), first order Runge-Kutta-Legendre (RKL1) and 2nd
order Runge-Kutta-Legendre (RKL2) to allow for a comparison of the RKL methods with the
already vetted FE and RK2 methods. The simulations were run using code written for use at
Los Alamos National Labs and implemented via the programming language Amrita to ensure
all parameters for each simulations were the same across each solver.

Results
Figures 13.6, 13.7, 13.8, and 13.9 show the burn time contours and the detonation shock ve-
locity of simulations using the RKL1 method. All simulations using the slab geometry were
nearly identical. Thus, to allow for clarity, the following results will only include the arc ge-
ometry as this geometry stresses the algorithm more severely. All simulations using the RKL2
method and simulations using RKL1 with an upwind solver matched the results of the FE and
RK2 methods to withing 1 percent. Simulations employing the RKL1 method and either a
centered difference or limited flux spatial solver matched the FE and RK2 solution to within
1 percent for the plane wave shock and 15 percent for the circle wave shock (Figures 13.15,
13.16). Figures 13.10, 13.12 and 13.11 show the detonation velocity along inner, outer and
middle arcs for a circle detonation with an upwind solver. Lastly, the RKL1 and RKL2 meth-
ods show a decrease in run time that is proportional to the mesh resolution, resulting in run
times decreased by a factor of 4 and 2 respectively over the FE solver for a mesh resolution of
0.0125cm (Figs. 13.13 and 13.14).

Discussion
With the desire to model detonations shock dynamics at higher and higher resolution comes the
need to develop faster time stepping algorithms. This paper presents one such algorithm, the
Runge-Kutta-Legendre method and demonstrates on its ability to decrease runtime as a factor
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Figure 13.3: A depiction of the arc geometry used in the simulations. The shock wave starts at
the bottom right and moves around the curve through the high explosive.

Figure 13.4: A list of the parameters varied for the arc geometry, a full parametric study with
all possible combinations was run.
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Figure 13.5: A list of the parameters varied for the slab geometry, a full parametric study with
all possible combinations was run.

Figure 13.6: The detonation shock velocity and burn time contours for a 0.4cm wide slab and
a plane wave shock solved with the RKL1 time stepping scheme.
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Figure 13.7: The detonation shock velocity and burn time contours for a 2cm wide arc and a
plane wave shock solved with the RKL1 time stepping scheme.

of spatial resolution when compared to traditional methods such as forward Euler without a
significant loss in accuracy.

Accuracy

For several different simulations the RKL1 and RKL2 methods were shown to have little or no
difference from the standard FE method of solving the DSD equations in the time domain (Figs
13.10-13.11,13.15-13.16). The slight difference in solutions is caused by the outer reflective
boundary condition, but this is more an artifact in the difficulty of the spatial solver to handle
the outer radius boundary condition. The error is less than 1% for all solvers except for RKL1
when combined with a second order spatial solver. While the exact explanation of this error
is unknown, it is thought to be caused by the combination of a second order accurate spatial
solver with a first order accurate time solver. This hypothesis is supported by the fact that
the FE method breaks down under similar conditions at very fine resolutions. Lastly, while
numerous conditions were tested, additional tests with more deformed meshes and more non-
linear material properties need to be conducted in order to fully examine the capabilities of the
RKL method.

Run Time

The primary goal of implementing the RKL time stepping schemes is to improve simulation
run time which would allow for more detailed and more comprehensive simulations. The
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Figure 13.8: The detonation shock velocity and burn time contours for a 2cm wide arc and a
colliding plane wave shocks solved with the RKL1 time stepping scheme.
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Figure 13.9: The detonation shock velocity and burn time contours for a 2cm wide arc and a
circle detonation shock solved with the RKL1 time stepping scheme.
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Figure 13.10: The detonation shock velocity plotted along the inner arc for an inner radius of
2 cm and an outer radius 4 cm with dr=0.025 for RKL1, RKL2, FE and RK2 solvers with an
upwind spatial solver.
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Figure 13.11: The detonation shock velocity plotted along the inner arc for an outer radius of
2 cm and an outer radius 4 cm with dr=0.025 for RKL1, RKL2, FE and RK2 solvers with an
upwind spatial solver.
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Figure 13.12: The detonation shock velocity plotted along the inner arc for an middle radius of
2 cm and an outer radius 4 cm with dr=0.025 for RKL1, RKL2, FE and RK2 solvers with an
upwind spatial solver. Notice there is a slight difference between solutions, but less than 1%
error
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Figure 13.13: The run time of RKL1, RKL2 and FE solvers for varying resolutions for a circle
detonation solution, notice the decrease in run time for RKL1 and RKL2 scales with a decrease
in dr.
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Figure 13.14: The run time of RKL1, RKL2, RK2 and FE solvers for varying resolutions
plotted on a log-log plot for a circle detonation solution, notice the decrease in run time for
RKL1 and RKL2 scales with a decrease in dr.
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Figure 13.15: The difference between RKL1, RKL2 and RK2 when compared to the FE solu-
tion wth an upwind spatial solver, notice that there is less than 1% average error.
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Figure 13.16: The difference between RKL1, RKL2 and RK2 when compared to the FE solu-
tion wth an upwind spatial solver, notice that there is less than 1% average error for RKL2, but
that RKL1 doesn’t match the correct solution.
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RKL1 method demonstrated the ability to run more quickly than FE ( 4x faster for dr = 0.0125
cm). Additionally, RKL2 provided simulation results more quickly than FE ( 2x faster for dr =
0.0125 cm) while providing a second order accurate solution (compared to a first order accurate
for FE). Figures 13.13 and 13.14 demonstrate that both methods demonstrate that the decrease
in run time when compared with FE scales linearly with dr. This matches the theoretical
decrease in run time expected. Although computing time was limited during the study and it is
desired to examine if these trends continue to higher resolutions, the RKL methods demonstrate
a significantly lesser run time than FE methods.

Ultimately, an initial study demonstrating the ability of the RKL method to simulate det-
onation shock dynamics accurately while decreasing run time by significant amounts when
compared with traditional time stepping methods. As with any computational method, more
work needs to be done to examine the limits of these methods and apply each method to sim-
ulate the correct problems, but the RKL methods demonstrate a promising advancement to the
field of computational detonation shock dynamics.
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Abstract

This report will discuss the development of a computational model to study the evo-
lution of plasmas generated from thin metal foils by next generation light sources such as
the SLAC Linac Coherent Light Source (LCLS) and the LANL proposed Matter-Radiation
Interactions in Extremes (MaRIE). Smoothed Particle Hydrodynamics (SPH) is used to
model the plasma evolution because of the ease with which it handles the open boundary
conditions and large deformations associated with these experiments. Our work extends
the basic SPH method by utilizing a two-fluid model of an electron-ion plasma that also
incorporates time dependent ionization and recombination by allowing the SPH fluid par-
ticles to have evolving mass based on the mean ionization state of the plasma. Account-
ing for the initial condition of the experiment our model captures solid and liquid metal
physics. In our plasma model we incorporate degeneracy in our electron equation of state
and can handle strongly coupled ions and warme dense matter physics. Additionally, inter-
species heating, thermal conduction, and electric fields are also accounted for. The current
status and results of the project are presented, with the goal of using this framework to
develop a model that can be used in the design and interpretation of future experiments.
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Introduction
Recent developments at the SLAC LCLS have allowed experimentalists to investigate material
properites in extreme regimes. In particular, advances in the x-ray free electron laser (XFEL)
have allowed for the production and investigation of dense plasmas produced from thin metal
foils[29]. This behavior has been modeled on the femtosecond time scale and micrometer
length scale to study how the laser light is absorbed in the material[18]. With the possible
development of the MaRIE XFEL at Los Alamos there is an interest in developing a full ex-
perimental simulation capability. To capture the full experiment a model must capture length
and time scales beyond what has previously been accomplished. With the understanding that
molecular dynamics and kinetics approaches would be too computationally costly to capture
the desired behavior we adapted smoothed particle hydrodynamics (SPH). As a Lagrangian
and meshfree method, SPH avoids many of the issues that arise from other mesh based hydro-
dynamics methods. In particular it doesn’t require prior knowledge of how the experimental
sample may deform. The objective of this project is to produce a first attempt that may later
inform the design of a more fully developed simulation capability. This report details our work
producing a model and code that simulates the relevant physical phenomena.

Figure 14.1: This is the SLAC LCLS experimental setup for studying different states of
matter[29]. It presents the variety of material phases XFEL’s can investigate. We are par-
ticularily interested in the last two phases, but to capture the heating process we need to model
all of the phases from solid up to the plasma regime. Different material phases may also exist
in different locations of the sample at the same time. Thus we expect we need to capture all
of the phases to simulate the experiment. The sample will also be on the order of 10 to 20
micrometers thick and much wider and taller, making the modeling difficult to achieve through
kinetics or molecular dynamics.

Physical Model
In the experiments of concern here, the sample starts out as a thin metal foil near room tem-
perature. Energy is deposited in the electrons through interactions with the laser, which is a
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thoroughly studied process[18]. This project aims to simulate the behavior that follows as the
material heats and changes phase due to energy transfer from the electrons to the ions. Our
model takes into account phases across the entire experimental temperature regime.

Solid Mechanics

In the beginning of the simulation, it is necessary to incorporate solid mechanics to capture the
behavior of the sample before it is heated. Here the shear stress, τττ , in a material is a function
of both strain and strain rate, ε , and thus a differential equation governing the evolution of the
shear stress must be numerically solved[56]. The Jaumann Rate is used to express the time rate
of change of shear stress tensor, τ̇ττ , independently of the frame of reference

τ̇ττ = G ε̄εε + τττRRR+RRRτττ (14.1)

Here G is the shear modulus of the material, ε̄εε is the traceless part of the strain rate tensor
εεε , and RRR is the rotation rate tensor. εεε , RRR, and, ε̄εε are defined in general below as [56]

εεε ≡ 1
2

(
∇vvv+(∇vvv)TTT

)
(14.2)

RRR≡ 1
2

(
∇vvv− (∇vvv)TTT

)
(14.3)

ε̄εε = εεε− 1
3

Tr(εεε)III (14.4)

where III is the identity matrix. In this work, the perfectly plastic yield model is also in-
corporated, meaning that if the J2 invariant of the shear stress tensor exceeds the known yield
stress J0, the shear stress has to be scaled back to the yield surface. This is represented in equa-
tion 14.5. The J2 invariant is shown in equation 14.6, where Einstein summation convention is
used.

τττ

√
J0

3J2
⇒ τττ (14.5)

J2 =

√
1
2

ταβ ταβ (14.6)

Here the shear stress tensor τττ is represented as ταβ . Incremental plastic strain work is not
currently accounted for in the energy equation, and thus the energy equation is only valid in
the elastic range[56].

The Mie-Grueneisen Equation of State is used to to find the material pressure as a function
of density and temperature and is well suited for handling materials compressed via shock.

p(ρ,T ) =
(

1− 1
2

ξ η

)
pH +ξ ρCvT (14.7)

Here p is the material pressure, ξ is the Gruneisen parameter, pH is the pressure along the
Hugoniot curve, and η is a measure of the change in density. pH is determined from equation
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14.9. It is important to note that the sign of η determines if pH is positive or negative, resulting
in a positve pressure if the material is compressed to a density above the standard density and
a negative pressure if the material is below the standard density.

η =
ρ

ρ0
−1 (14.8)

pH =

{
a0η +b0η2 + c0η3 η > 0
a0η η < 0

(14.9)

Here a0, b0, and c0 can be computed from the linear shock velocity relation and are obtained
from the following relationships.

a0 = ρ0c2
s (14.10)

b0 = a0 [1+2(Ss−1)] (14.11)

c0 = a0

[
2(Ss−1)+3(Ss−1)2

]
(14.12)

Here cs is the sound speed in the material, and Ss is the proportionality constant relating the
shock speed to the particle speed, which is also experimentally determined.

Liquid Metal Behavior

There are two important changes that happen as the material transitions from the solid to liquid
phase. The first is the change from elastic behavior to viscous behavior. This is reflected by
the shear stress now being independent of strain and only a function of strain rate, eliminating
the need to evovle equation 14.1. In the liquid phase, the shear stress is directly proportionaly
to the strain through the dynamic viscosity µ , shown in equation 14.13.

τττ = µ

(
2SSS− 2

3
III∇ · vvv

)
(14.13)

SSS≡ 1
2

(
∇vvv+(∇vvv)TTT

)
(14.14)

For the viscous behavior we use a model which spans the liquid metal, warm dense matter,
and hot electron ion plasma regimes. This model is discussed in the following ion section. The
second change in behavior is in the equation of state. For equations of state we have yet to
concretely decide on our model of choice. There are some simple options[61], but we have yet
to investigate their validity for our problem.
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Ion Properties

The ions are modeled using the Yukawa potential which uses an electron screening length λe− ,
shown in equation 14.15. The electron screening length is given in equation 14.16.

φ(r) ∝
e
− r

λe−

r
(14.15)

λe− =
h̄3

π

e2m3/2
e− 2

√
β

2
F1/2(β µ) (14.16)

where h̄ is Planck’s constant divided by 2π , e is the charge of an electron, me− is the mass
of an electron, β = 1

kBTe−
for Boltzmann’s constant kB and electron temperature Te− and µ is

the chemical potential for the electrons, something which will be more fully discussed in the
electron property section. Fa indicates a Fermi-Dirac defined as

Fa(x) =
∫

∞

0

ta

et−x +1
dt (14.17)

To get to the ion properties we desire we must also develop a radial disribution function g(r).
In our case we simply take it to be a unit step at the ion sphere radius ai+ defined using the
number density of ions ni+ .

1
ni+

=
4
3

πa3
i+ (14.18)

We can then use the Yukawa potential and radial distribution function to obtain pressure and
heat capacity[81]. By introducing mean ionization Z̄ (which comes from the Thomas-Fermi
average atom model), the pressure is modeled as

pi+ = ni+kBTi+ +
2
3

πn2
i+Z̄2e

−
ai+
λe−
(
a2

i+ +3ai+λe−+3λ
2
e−
)

(14.19)

For heat capacity we obtain

Cv,i+ =
3
2

ni+kB (14.20)

which is simplistic due to our choice for g(r) lacking temperature dependence. As previously
discussed a viscosity model is needed in the liquid metal phase and at higher temperatures. For
this we use the Yukawa Viscosity Model(YVM)[76]. Using classic plasma parameters

Γ =
Z̄2e2

ai+kBTi+
κ =

ai+

λe−
ωp =

√
4πni+Z̄2e2

mi+
(14.21)

We may then develop the melting point boundary Γm along with the einstein frequency ωE and
base viscosity η0

Γm(κ)≈ 171.8+82.8(e0.565κ1.38
−1) ωE ≈ ωp

1√
3

e−0.2κ1.62
(14.22)

η0 =
√

3ωEmi+ni+a2
i+ (14.23)
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These can be used along with a developed fit[76] to get coefficents A,B,C and α,β to get
viscoity η as

η

η0
= A

(
Γm

Γ

)α

+B
(

Γ

Γm

)β

+C (14.24)

It is assumed that on the time scales of interest here, thermal conduction among the ions will
be negligible and thus we take κi+ = 0. The last property of interest relevant to the ions’
governing equations is the coupling factor used in the two temperature model and is discussed
in the electron properties section. This coupling factor also motivates our choice for neglecting
thermal conductivity between ions.

Electron Properties

As a first attempt we have chosen to model the electrons as an ideal fermi gas. Given some
number density ne− we can find the chemical potential µ as mentioned earlier. This leads to
the pressure and heat capacity being

pe− =
1

3π2

(
2me

h̄2

)3/2

(kBTe)5/2F3/2(β µ) (14.25)

and

Cv,e− =
8
√

2πm3/2
e

h3

[
5
2
(kBTe)3/2F3/2(β µ)+(kBTe)5/2 3

2
F1/2(β µ)

∂β µ

∂Te

]
(14.26)

These incorporate some of the more basic quantum behavior from Quantum Mechanical Hy-
drodynamics(QMH). For thermal conductivity we have chosen to use the model developed by
Lee and More as it spans our entire temperature range of interest[54]. This model gives the
electron thermal conductivity as

κe− = ne−(kBTe−)
τ

me−
Aβ (β µ) (14.27)

Here we note Aβ (β µ) is defined as a constant mainly dependent on fermi-integrals

Aβ (β µ) =
20
9

F4(β µ)(1−16 F3(β µ)2

15F4(β µ)F2(β µ))

F1/2(β µ)(1+ e−β µ)
(14.28)

The response time τ is a function of various species parameters as well as the coulomb loga-
rithm lnΛ and is given as

τ =
2
√

me−(1+ e−β µ)

2
√

2Z̄ni+e4 lnΛβ 3/2
F1/2(β µ) (14.29)

The coulomb logarithm is defined as

lnΛ =
1
2

ln

[
1+
(

bmax

bmin

)2
]

(14.30)

Final Reports: 2016 Computational Physics Student Summer Workshop Page 160



Smoothed-Particle Hydrodynamics Model for Laser-Produced Plasmas

where we have minimum and maximum approach lengths given as

bmin = max

[
Z̄e2β

3
,

hβ 1/2

2
√

3me

]
(14.31)

bmax =
1

λ 2
e−

+
1

λ 2
i+ +a2

i+
(14.32)

where it is noted that
1

λ 2
i+

=
4πni+(eZ̄)2

kBTi+
(14.33)

This work can then be repurposed to obtain a response time τ used in the two temperature
constant G as[39]

G =
π2me−ne−c2

s,i+

6τTe−
(14.34)

We note that electron thermal conduction is expected to be relatively fast and that their en-
ergy will be deposited into ions through the two temperature constant G. Overall then, we
expect ion-ion energy transfer to occur by ions first transferring their energy to electrons, then
electrons transfering energy amongst themselves, then lastly electrons transferring their energy
back to the ions. This process is expected to dominate ion thermal conduction, and thus we
choose to neglect it. It is now necessary to develop the computational model to hold all of this
physical behavior.

Smoothed Particle Hydrodynamics
Smoothed Particle Hydrodynamics is, as its name suggests, a particle method, making it inher-
ently meshfree and Lagrangian. However, it doesn’t simulate real particles, instead it consists
of pseudo particles. These pseudo particles are ”smoothed” through space using what is called
a kernel function, W , which is a function of inter-particle seperation rrr and smoothing length h.
The required properties of the smoothing kernel W are that[64]:

•
∫

W (rrr,h)drrr = 1

• limh→0W (rrr,h) = δ (r)

The kernel function effectively approximates the sampling property of the Dirac delta as:

f (rrr) =
∫

f (rrr′)δ (rrr′− rrr)drrr ≈
∫

f (rrr′)W (rrr′− rrr,h)drrr′′

Lastly, for computational ease we add the property of compact support. Mathematically this
states that for some positive real C we have |rrr| ≥ C h⇒W (rrr,h) = 0. Through some ma-
nipulation we can discretize this sampling property using the pseudo particles to get the two
fundamental relations of SPH:

ρ(rrr)≈
N

∑
i=1

miW (rrri− rrr) (14.35)
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f (rrr)≈
N

∑
i=1

mi

ρi
f (rrri)W (rrri− rrr,h) (14.36)

SPH has one last useful property: gradients of f (rrr) can be represented as gradients of the
weight function. One may derive this through integration by parts finding that[56]:

∇ f (rrr)≈−
N

∑
i=1

mi

ρi
f (rrri)∇W (rrri− rrr,h) (14.37)

These relations and the continuum hydrodynamics equations can be used to produce the SPH
governing equations.

Two Fluid Smoothed Particle Hydrodynamics Equations
Using the SPH principles in the previous sections we can produce a set of governing equations.
Here we introduce a species notation where fAi indicates the property f of the i’th particle of
the A species. We can start with an equation similar to our previous work which is the equation
regarding conservation of mass:

ρAi =
NA

∑
j=1

mA jWi j (14.38)

We introduce one complication to this equation: addition or subtraction from the masses
of the electron and ion SPH particles to reflect ionization. To do this we use the previously
discussed Z̄ which uses the ion density and electron temperature in its calculation. We want Z̄ to
remain constant through the ionization process, meaning ion density and electron temeprature
should remain constant. Changes in ion density are neglected since the ions mass is so much
larger than the electron mass. On the other hand we need electron temperature to remain
constant everywhere through the ionization process (else the order in which we ionize ions
may matter) implying that

Te−(rrr) =
Ne−

∑
i=1

me−i
ρe−i

Te−i
W (rrre−i

− rrr,h) (14.39)

must be constant for all rrr implying that
me−i
ρe−i

must be constant for all i giving a system of

equations which we solve at each time step.
We also must of course handle conservation of momentum. This gives rise to the following

equation[56]:

D
Dt

vvvAi =−
NA

∑
j=1

mA j

(
σσσAi

ρ2
Ai

+
σσσA j

ρ2
A j

+ΠAi j

)
·∇Wi j−q∇φ (rrrAi) (14.40)

Π =


−α c̄Ai j µAi j+β µ2

Ai j
ρ̄Ai j

vvvi j · rrrAi j < 0

0 vvvAi j · rrrAi j ≥ 0
(14.41)
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µAi j = h
vvvAi j · rrrAi j

|rrrAi j |2 +0.01∗h2 (14.42)

Here σσσ is the stress tensor and vvv is the velocity vector. We also introduce an artificial viscos-
ity term Π[64]. This terms is non-zero only when the particles are approaching each other,
physically meaning it only has an effect when it is under compression. µ in this expression
scales the rate of compression by the the smoothing length, and adds a term which prevents this
from blowing up for infinitesimally close particles. Lastly in our momentum equation we must
include the gradient of the electric potential φ which will be discussed in the computational
details section.

The last governing equation we are concerned with is conservation of energy:

CV,Ai

D
Dt

=
1
2

NA

∑
j=1

mA j

[
PPPAi j +KKKAi j

]
·∇Wi j +SAi±XAi (14.43)

This contains several important terms. The first is the pressure work done between two parti-
cles:

PPPAi j ≡

(
pAi

ρ2
Ai

+
pA j

ρ2
A j

+ΠAi j

)
vvvAi j (14.44)

In addition we must also incorporate the deviatoric stress work that accounts for viscous forces:

SAi ≡
1

ρAi

τAiεAi (14.45)

Beyond this we add to the standard SPH energy equation[56] a term accounting for thermal
conduction between particles of the same type[40]:

KKKAi j ≡
8(TA j −TAi)

ρAiρA j

κAiκA j

κAi +κA j

rrrAi j

|rrri j|2
(14.46)

Lastly we have the two temeprature interaction term, X , which is added for the ion fluid and
subtracted for the electron[39]:

XAi ≡
Ne−

∑
j

Ni+

∑
k

G(Te−j
,Ti+k

,ρe−j
,ρi+k

)(Te−j
−Ti+k

)
me−j

ρe−j

mi+k
ρi+k

Wie−j
Wii+k

(14.47)

This full two temeprature term involves the square of the typical number of calculated inter-
actions. To reduce the computationally complexity we assume that the ion properties change
very little and have a minimial effect on X , thus G can be pulled out of the inner sum and using
the fact that

1 =
Ni+

∑
k

mi+k
ρi+k

Wii+k
(14.48)

we arrive at a less computationally intensive interaction term:

XAi ≈
Ne−

∑
j

G(Te−j
,Ti+,ρe−j

,ρi+)(Te−j
−Ti+)

me−j

ρe−j

Wie−j
(14.49)

These equations together with the material property relations yield a closed set of equations
that govern our system.
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Computational Details
Currently our model is implemented in c++ with some python integration. There are several
properties of SPH that we have used to accelerate our program. One of the most basic is
that as particle interactions are calculated sperately for each particle we are able to trivially
parallelize our code using OpenMP. Secondly, the compact support property of the weight
function means that interactions need only be calculated between particles separated below
some distance. To know which particle interactions we need to calculate we add a data structure
to organize them in space. We use a linked cell list, a popular choice in molecular dynamics, to
organize our particles. Another popular choice for SPH is an octree, which we have partially
implemented. The last computational tool we use is the fast multipole method, a tool which
helps accelerate the calculation of our long range electromagnetic force. Typically this is done
using a 1/r potential, but we introduce a short range correction due to the “smoothed” nature
of the particles. Using all of these techniques together reduces calculation cost from O(n2) to
at worst O(n logn).

Current Status and Results
Preliminary verification of the code has been done for the basic gas dynamics and solid me-
chanics aspects of the code. Further testing needs to be done in each of these portions individ-
ually as well as in the fully integrated model. Verification of the physics involved in each phase
of matter is important as it is expected that several different material phases will be present at
once in these simulations.

Gas Dynamics Results

To test the gas dynamics portion of the code, the well known Sod shock tube problem was used
along with a very primitive model of the simulation target. A comparison of the SPH generated
shock tube solution is made with the exact solution in Figure 14.2. Periodic bounary conditions
are applied along the tube and square sheets of 49 SPH particlecs are simulated. Additionally,
artificial viscosity is implemented.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 164



Smoothed-Particle Hydrodynamics Model for Laser-Produced Plasmas

Figure 14.2: Comparison of the SPH generated solution (blue) with the exact solution (red).
The drop off in the SPH solution on the outer edges is due to shockwaves propagating inwards
from vacuum boundary conditions. On the left half of the domain the gas is initially at 8 times
the density and 1.25 times the internal energy of the right half.

Moving towards a geometry that more closely resembles that of the experimental target, an
inviscid, gamma-law gas with a heated center is also simulated to observe qualitative behavior.
The geometry and initial condition, shown in Figure 14.3, bear resemblance to the well known
Sedov blast wave test problem. While a comparison to the Sedov blast wave has not been
made here, it is another future test problem that may be used in verification. In this simulation,
periodic boundary conditions have been applied on all faces of the sample. It is important to
note that the numerical values used to initialize this simulation are not physical.
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Figure 14.3: An inviscid gas with a center heated to 20x the energy and periodic boundary
conditions applied on all faces. Numerical values used here are not physical.

As is qualitatively expected, at a later time, the hot inner gas has expanded outwards and
a pressure wave has formed, shown in Figure 14.4. The gas near the outer edge has been
compressed due to the periodic boundary conditions, which also keep the gas from expanding
out of the plane.

Figure 14.4: The hot inner gas has expanded and a pressure wave has formed, as expected is
expected qualitatively.
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Solid Mechanics Results

To test the solid mechanics portion of the code, a 20µm x 100µm x 100µm aluminum target
[24] is being simulated inside a vacuum. This is expected to be representative of the exper-
imental target before heating begins. In this scenario, the target should simply remain in an
equilibrium state until further disturbed. However, because the SPH particles are initialized in
an arrangement that may not correspond to this equilibrium configuration, it is expected that
the SPH particles will evolve until this configuration is reached. This evolution is in part driven
by the Mie-Gruneisen equation of state, equation 14.7, and the decrease in density of particles
along the edge of the target. SPH particles in the middle of the sample are initialized to the
physical density of Aluminum, 0.0027ng/µm3. Thus the density of SPH particles on the edge
of the target is lower than the physical density of Aluminum. This results in negative pressures
given by the Mie-Gruneisen EoS and the particles on the edge of the sample will tend to evolve
such that their density increases.

The first study examining the solid mechanics used a 4x20x20 grid of particles evenly
spaced 5µm apart in each dimension. The density profile of this simulation is shown in Figure
14.5, where it is observed that minimum SPH density is 0.00108ng/µm3 while the maximum is
near the physical density of 0.0027ng/µm3. At approximately 60 ns, significant deformation
is observed in the sample, though the the spread in density has significantly dropped, with
the minimum now being 0.0025ng/µm3 and the maximum being 0.0028ng/µm3. Though it
is not obvious from Figure 14.6, significant hollowing has occured as the 2 center sheets of
particles have moved outwards. Next observing the target at 187 ns, Figure 14.7, the density
profile is seen to converge to 0.0026ng/µm3 and an equilibrium particle configuration has
been reached. The convergence of the particle density near the physcial density of aluminum
is expected as well the the evolution to a stable configuration. However it was not expected
that this configuration would so greatly deviate from the desired intial target shape and that the
hollowing of the sample would occur.

Figure 14.5: Initial state of a 20 x 100 x 100 µm target. The particle spacing is 2.5µm in each
dimension.
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Figure 14.6: The simulated target after 60 ns. The target has significantly deformed and has
become hollowed out, inaccurately respresenting the physical target. The density profile has
expectedly converged towards the physical density of Aluminum.

Figure 14.7: The simulated target after 187 ns. The target is still significantly deformed in a
hollowed out equilibrium configuration.

To examine spatial resolution effects, the above simulation was repeated using an 8x40x40
grid of particles evenly spaced at 2.5µm in each dimension and with adjusted to masses to keep
the density constant. Again the initial density profile of the target ranges from 0.00106ng/µm3

to 0.0027ng/µm3, as is seen in Figure 14.8. After viewing target through time until 60 ns, one
can see that the SPH particle density again converges around the physical density of aluminum,
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ranging from 0.00261ng/µm3 to 0.00271ng/µm3, as expected. In this case however, there is
significantly less deformation and no noticeable hollowing, suggesting that the previous case
lacked the required spatial resolution to accurately simulate the target.

Figure 14.8: Initial state of a 20 x 100 x 100 µm target. The particle spacing is 2.5µm in each
dimension.

Figure 14.9: Simulated target after 60 ns. The target has approached an equilibrium configu-
ration closely resembling the desired shape of the target as well as a density profile near the
physical density of Aluminum.
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Conclusion
Currently while we have developed much of the physical model and various snippets of code
for calculating material properties many things are still unintegrated with the main program.
Next steps include integrating all of the material properties and introducing the ability to switch
between phases. After that we plan to add in our electrons, something which will require tuning
our time steps. The fast multipole method library is another feature yet to be integrated. As
it stands we have some basic verification but in order to fully capture the experiment there is
much left to be done.
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Abstract

A programming model utilizing task-parallelism is applied to the finite element arbi-
trary Lagrangian-Eulerian hydrodynamics code CHICOMA developed recently at the Los
Alamos National Laboratory. CHICOMA uses an unsplit formulation, allowing the creation
of the adaptive mesh to be done simultaneousy with the finite element gradient calculations
and subsequent reconstruction step. In the present study, the concurrency is exploited using
OpenMP nested multithreading. The implementation strategy and performance impacts
thereof are assessed and presented in detail. It is found that the task-parallel approach
achieves a noteworthy speedup when compared to the unmodified code.
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Introduction

Background

Modeling of shock hydrodynamics problems is a major area of interest, but represents a
significant challenge for computational physics solvers. As the capabilities of these solvers
increase, the amount of computing resources needed increases as well. For over a decade, the
clock speeds of processors have remained relatively stagnant compared to the once expected
year-over-year performance gains of the past. As such there has since been an emphasis in the
computational physics community on achieving maximum parallel performance. The arbitrary
Lagrangian-Eulerian (ALE) hydrodynamics solver CHICOMA developed at the Los Alamos
National Laboratory was created, among other reasons, to address this issue by using highly
efficient data structures and accurate numerical methods. In addition, the use of the unsplit ad-
vection formulation paves the way for additional parallel performance gains not possible with
typical ALE algorithms.

The suitability of the ALE approach to shock hydrodynamics is well established. For prob-
lems that are dominated by large-scale advection of fluid or moving boundaries, the Eulerian
approach is unnatural and results in an unnaceptable amount of numerical dissipation. Methods
employing a Lagrangian frame are a much better choice for shock problems, as the resolution
naturally follows the flow in the absence of advective fluxes. However, in fluid problems in-
volving regions of high vorticity or other large deformations, the mesh can become tangled.
ALE methods can alleviate such issues. The method allows the mesh to move at an arbitrary
velocity anywhere in the range from the Eulerian limit (zero velocity) to the Lagrangian limit
(fluid velocity). The typical scheme for mesh motion in ALE formulations is the Lagrange-
plus-remap approach. This approach, at each time-step, calculates the fluid quantities in a
purely Lagrangian sense. Then the mesh is optimized and a new and improved mesh is gen-
erated, before finally the fluid quantities are advected from the old to the new mesh in a step
known as the remap step. The Lagrange-plus-remap approach has a number of merits, but
its performance in terms of speed on parallel computers is ultimately limited by its inherently
sequential nature. In order to maximize the effectiveness of parallel computing, it is advanta-
geous to identify unnecessary sequential operations at the algorithm design level. CHICOMA,
in building off of unsplit advection methods, has succeeded in this regard. In this formulation,
also known as Direct ALE, a pure Lagrangian step is not needed, and the creation of the adap-
tive mesh is done simultaneously with a significant portion of the fluid advection calculations
during the temporal integration. As such, there is an opportunity to exploit this parallelism and
split the computational resources between these two operations. This paper discusses mod-
ifications to CHICOMA that take advantage of this capability and their impact on the code’s
performance.

OpenMP Nested Parallelism

A task-parallel version of CHICOMA was developed using OpenMP. OpenMP is an appli-
cation programming interface (API) that provides functionality for spawning parallel threads
on a shared memory system. Furthermore, OpenMP provides support for nested parallelism,
allowing a parallel region to exist inside an active parallel region. A thread may ‘fork’ and

Final Reports: 2016 Computational Physics Student Summer Workshop Page 172



Task Parallelism Applied to Unsplit Arbitrary Lagrangian-Eulerian Algorithms

spawn a team of threads to execute a section of concurrent code. This is referred to as a sin-
gle active level. Upon completion of the code, the team will ‘join’ and the original (master)
thread continues with serial operations in the code. In contrast, nested parallelism may allow
multiple parallel regions, where, for example, a thread inside the previously mentioned team
may spawn its own team and become the master of it. In this circumstance there would be two
active parallel levels. This concept is demonstrated in Figure (15.1).

1 active parallel level

master thread

2 active parallel levels

master of nested team

Figure 15.1: OpenMP fork-join nested parallelism concept.

The concept of nested parallelism was critical to the development of the task-parallel model
introduced in this report. This approach was chosen in favor of more programming-intensive
methods such as the use of message-passing interfaces.

Chicoma Hydrodynamics Solver

Overview

CHICOMA is a three dimensional finite element (FE) unsplit ALE hydrodynamics solver.
Interested readers are referred to [84] to obtain more details about the solver and the numerical
methods it employs. This novel ALE approach allows for the independent creation of the
adaptive mesh while simultaneously calculating the finite element gradients of primitive fluid
variables and computing the reconstructed solution values. These two operations are the targets
of our task-parallel approach. A single time step in CHICOMA with the proposed modifications
is summarized below:

1. Simultaneously compute:
(a) mesh velocity.
(b) finite element gradients of primitive fluid variables and

then reconstruct variables on cell edges.

2. Calculate numerical flux using reconstructed values and approximate Riemann solver.

3. Sum the fluxes over the edges

4. Advance the solution via a multi-stage scheme to n+1.

5. Advance the mesh coordinates to n+1.

6. Compute remaining geometric quantities at n+1.

7. Obtain final conserved solution values at n+1.

8. Update pressure and local soundspeed at n+1 via equation of state.
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Mesh Motion

The creation of the adaptive mesh is done by specifying the mesh velocity on the bound-
ary, then applying a Laplacian smoothing approach toward the interior of the domain. The
smoothing works by applying a diffusion operator to the mesh velocity w such that

µO2wk
i = 0 , (15.1)

where the diffusivity µ is dependent upon the local fluid vorticity. The system is iterated using
a preconditioned Conjugate Gradient method.

Calculation of Gradients and Reconstruction

This step calculates the gradient of the primitive fluid variables and computes reconstructed
values on the cell edges to be used for the flux computations. Steps following this require the
value of the mesh velocity, and are performed after both of these tasks have been completed.

Implementation

Task Parallel Model

The conventional data-parallel approach was already implemented in CHICOMA via both
OpenMP loop-level threading and MPI domain decomposition before the efforts of the current
study. While the MPI-enabled version of CHICOMA was not under study in this effort, the
effects of task parallelism using a pure nested OpenMP approach were explored in depth.

OpenMP lends itself well to task parallelism, providing numerous constructs to manage
thread allocation. To accomplish the objective of splitting worker threads between the two
tasks at hand, OpenMP Single constructs are used. This instructs one single thread in any
current team to execute the enclosed code. Each of the calls to the two tasks is enclosed in
a Single region to allow for simultaneous execution. However, just before the calls are
made, the encountering threads call OMP SET NUM THREADS() in order to set the number of
threads for each subsequent team it spawns while executing its task. The two running threads
then go on to call their respective subroutines. A simple illustration of this general framework
is provided in Figure (15.2).

Start timestep

Set team size

Set team size

Call mesh vel()

Call gradients() Loop level
threading

Loop level
threading

Compute fluxes,
call load balance,
& finish timestep

Figure 15.2: Diagram illustrating the task parallel model implemented in CHICOMA.

At the start of a simulation, the number of threads for each task is initially specified to be
half of the total threads available. Then at each timestep, the execution time of the two tasks is
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measured and fed to a load balancing routine. The routine sets the number of threads for each
task for the subsequent timestep. This procedure takes advantage of the fact that the amount
of work done in each task is fairly constant for neighboring timesteps, but changes noticeably
throughought the length of the simulation. Thus the predictive nature of the load-balancing
algorithm has some validity. The pseudocode for this process is shown in Algorithm (15.1).

Algorithm 15.1 Compute mesh velocity and advective fluxes
procedure PHYS RHS(mesh velocity,fluid properties)

!$omp parallel num threads ( task threads )
!$omp single
call omp set num threads(mesh threads)
call Compute mesh velocity(...)

!$omp end single nowait

!$omp single
call omp set num threads(grad threads)
call Compute gradients and reconstruct solution(...)

!$omp end single nowait
!$omp end parallel

call Compute fluxes(...)

call Load balancing routine(...)

end procedure

Load Balancing

Implementing task parallelization in CHICOMA as mentioned poses the challenge of load
imbalance. The mesh smoothing approach introduced by equation (15.1) is not a constant-
load operation. The amount of work done by this routine may increase as a simulation moves
forward in time. As such, a robust method of correcting load imbalance is required. Several
paradigms, such as work stealing, would be appropriate to accomplish this objective, however
the method that was ultimately chosen works by predicting the number of threads to allocate
to each task at the next timestep. Two major versions of this routine were developed. Both
measure the time spent in each of the tasks, ∆τgrad and ∆τmesh, then compute the ratio as

ratio =
∆τgrad

∆τmesh
, (15.2)

and use this information to predict the correct thread ratio.
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Equation Load Balancing

This approach to load balancing solves the following system of equations in order to calcu-
late the number of threads to assign to each task:

∆τgrad

∆τmesh
× mesh threads

grad threads
= 1

mesh threads+grad threads = total threads.

(15.3)

By reformulating these equations using (15.2), the number of threads for mesh threads is cal-
culated as

mesh threads =
total threads

ratio+1
. (15.4)

As it stands, this approach will never maintain the correct thread ratio. A time ratio of one
will set the thread ratio back to one. An if statement to leave the number of threads assigned
as is based on the time ratio is necessary. In the results presented, no such if statement was
implemented.

Discrete Load Balancing

This approach is named as such due the fact that it is essentially a discrete version of the
continuous ‘Equation’ load balancing algorithm. In this formulation, the value of the thread
ratio falls into one of several if-tests, which determines a multiplier for each thread value. For
instance if ratio is significantly greater than one, multipliers will be determined to ensure the
number of threads for mesh threads is decreased and grad threads is increased. In order to
prevent an overcorrection, maximum and minimum multipliers of 3.0 and 0.3 are prescribed.

Results
To test our task parallel model, we ran the code with three model problems typically used

to test the chicoma code: Sedov, Triple Point, and Sod. The Sedov problem is the evolution
of a blast wave from a delta function pressure perturbation, i.e. it is the ideal explosion. The
Triple Point problem is the model of a shock propagating through a region with two fluids with
different densities. The Sod problem is the common shock tube problem with initial regions of
high and low pressure on each end. These three problems cover a range of typical fluid flow
features, and should adequately test the impact of our task parallel model. All problems tested
were three-dimensional versions.

We tested our model on three systems. Two of these were identical, Varan and Barugon.
Each was a 4 node system with 8 cores per node and 2 threads per core. The processors used
were an Intel Xeon CPU with a clock speed 2.7 GHz. Each system was set up to have 4
NUMA nodes with 16 threads/cores each. The third system, Vanhalen, was a 2 node system
with 8 cores per node and 2 threads per core. Processors were Intel Xeon with a clock speed
of 2.00 GHz. Core-level threading is implemented via Intel’s hyperthreading method. This
method is not equivalent to 2 actual threads per core, and simulations on this system were lim-
ited to a maximum of 16 threads to avoid any issues. The Sedov and Triple Point problems
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were run on Varan or Barugon; and the Sod problem was run on Vanhalen. Since the results
presented are not raw, the varying processor speeds should not impair any conclusions made.

In order to analyze the impact of our task-parallel model, we ran CHICOMA for a range of
thread counts. The unmodified version of CHICOMA was used as the baseline for comparison.
We calculated speedup as

S =
Ts

Tp
(15.5)

where Ts is the serial runtime and Tp is the parallel runtime. This represents a good metric
of the impact of parallel performance. In order to get a better idea of the impact of our load
balancing approaches, we calculated the time and thread ratios of each task. The effectiveness
of the load balancing routine is measured by the ratio of the elapsed times. A perfect routine
should keep the ratio at 1 for every timestep. The thread ratios will indicate the relative cost of
each task, useful as another metric for load balancing.

Sedov Problem Results

Displayed below is a plot of speedup for the Sedov problem. We can see that the task-
parallel method does lead to an improvement in performance. Speedup is a few factors greater
up to thread counts of 16. There is a dip in speedup for all the task-parallel versions at 20
threads, an unexpected result. It is possible this is due to using more threads than is on a single
NUMA node; memory sharing across these nodes may not be implemented well in OpenMP.
However, a similar dip is not observed in the unmodified code at 20 threads, casting some
doubt on this possibility. It could be dependent on the implementation of task-parallelism, and
requires more investigation. Although task-parallelism appears to improve performance, our
load balancing approaches do not appear to have much impact.

Figure 15.3: Plot of speedup for the Sedov problem. Task parallelism appears to improve performance
over the unmodified CHICOMA code; the impact of load balancing is less clear.
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Figure 15.4: Plot of time ratios for the Sedov problem at 16 threads. Load balancing does not appear to
improve the time ratio substantially, indicating that a more refined method could improve performance.

Figure 15.5: Plot of thread ratios for the Sedov problem. Increasing the number of threads improves
the ability of the load balancing method to adjust the number of assigned threads. At low thread counts,
load balancing may actually be detrimental to performance.

Looking at the time ratio for each load balancing method, we see that the time ratios do not
improve that much from the task-parallel case without load balancing. This tells us that our
load balancing algorithms need some modification. A thread ratio less than one confirms that
the mesh velocity calculation is the more expensive of two tasks. Plotting thread ratio provides
some interesting information. At low thread counts, load balancing appears to have a negative
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impact. There are not enough threads to correctly assign to each task. The number of threads
assigned constantly switches between one and three, which is not ideal. This is in part due to
the nature of all the load balancing algorithms; they do not consider the number of threads used
and round off calculated values to assign an integer number of threads.

Triple Problem Results

Displayed below is a plot of speedup for the Triple Point problem. It should be noted that
unlike the other test problems, the OpenMP Single construct was not used. Running with
this construct led to a segmentation fault. We identified the issue to be related to memory, since
increasing the stack size for each thread resolved the issue. Rather than changing the runtime
environment, a sections construct was to split the threads to the two tasks.

Figure 15.6: Plot of Speedup for the Triple Point Problem. The sections construct leads to poor
performance relative to the unmodified code, but load balancing has a an appreciable improvement.
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Figure 15.7: Plot of time ratios for the Triple problem at 16 threads. Load balancing does not appear to
improve the time ratio substantially, indicating that a more refined method could improve performance.

Figure 15.8: Plot of thread ratios for the Triple problem using the equation load balancing method.
Increasing the number of threads improves the ability of the load balancing method to adjust the number
of assigned threads. At low thread counts, load balancing may actually be detrimental to performance.
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Figure 15.9: Plot of thread ratios for the Triple problem, using the discrete load balancing method.
Thread ratios appear to remain relatively constant when thread count is increased, demonstrating the
method’s ability to effectively balance the load.

Performance for the task-parallel method seems to be poor, possibly due to the sections
construct. The task-parallel version of CHICOMA without load balancing does significantly
poorer than the unmodified case. Unlike in the Sedov problem, load balancing has an appre-
ciable impact, improving performance to be on par with the unmodified version. The time ratio
for equation load balancing is not that much better than the case without load balancing, but
discrete load balancing appears to do very well. The time ratio stays relatively close to one.
The ratio oscillates greatly towards the end of the simulation; likely due to significant variance
in the amount of work done by the mesh velocity smoothing routine. The thread ratio plot
confirms what was observed in the Sedov problem for equation load balancing. Increasing the
number of threads assigned improves the equation load balancing’s performance. However, the
discrete load balancing approach maintains what appears to be the ideal thread ratio, even at
low thread counts. The previously mentioned flaw in the equation load balancing approach is
apparent here.

Sod Problem Results

Task parallelism does not appear to be that useful for this problem. This may be because
the Sod problem is a much smaller (read: less computationally expensive) problem than other
problems. At 12 threads, it took approximately 2 minutes to run the problem to completion
versus approximately 30 minutes and an hour for the Triple Point and Sedov problems respec-
tively. The smaller problem size also appears to reduce the impact of load balancing. Although
the time ratio improved from two to one, exactly what the load balancing should do, there was
nearly no improvement in speedup. The time spent in each task is small enough that the change
in ratio does not have an appreciable change in raw time.
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Figure 15.10: Plot of Speedup for the Sod Problem. Given the problem’s small size, performance is
not significantly improved due to task-parallelism.

Figure 15.11: Plot of time ratios for the Sod problem. Both load balancing methods succesfully bring
the time ratio to one.
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Figure 15.12: Plot of thread ratios for the Sod problem, using the equation load balancing method. A
ratio of greater than one indicates that the gradient calculations are the more expensive task. This is in
contrast to the Sod Problem .

Figure 15.13: Plot of thread ratios for the Sod problem, using the discrete load balancing method. The
thread ratios are similar to those seen in the equation method, although the 4 thread case occasionally
has a higher ratio.

Although the task-parallel and load balancing methods are slightly slower than the unmod-
ified case, performance was observed to improve by retaining the structure of thread teams
using the Intel Hot Teams concept.
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Conclusion
In this study, we attempted to improve the parallel performance of an Arbitrary Lagrangian-

Eulerian hydrodynamics code, CHICOMA. We developed a task-parallel version of CHICOMA
that exploited concurrency in the code due to its unsplit formulation. We tested this method
with three test problems: the Sedov, Triple Point, and Sod problem. Task parallelism appears to
improve performance, however, there are some caveats. The performance of the task-parallel
model is dependent on the problem size, thread count, and load balancing approach. Very
little improvement was observed in performance when testing the Sod Problem, the smallest
of the three tested. Our load balancing methods work, however refining the load balancing
methods could lead to greater performance improvements. Future work for this project would
include testing larger problem sizes with more computing cores. We believe that the task-
parallel model would show additional benefit at larger problem sizes. Another possibility for
future performance improvements would be to use a MPI/OpenMP hybrid approach to split
the tasks between NUMA domains, thus reducing a possible memory-bound issue with the
current programming model. Overall however, our task-parallel model succeeds in exploiting
the concurrency available at a high level in the CHICOMA code.
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Abstract

VPIC is a high performance relativistic kinetic plasma simulation designed to run in
parallel using MPI, Pthreads, and vector intrinsics. The purpose of our work was to modify
VPIC to add support for OpenMP threading and running on GPUs. We implemented
OpenMP to support multi-threading in VPIC and verified the simulation energies against
the original VPIC. We explored using OpenMP environment variables for thread affinity
and found potential improvements; results using Knight’s Landing processors were mixed.
The core particle advance routine was adapted to run on GPU accelerators. Future work
includes expanding the OpenMP implementation to add higher-level parallel pragmas and
checkpointing support, and converting the rest of the code to run on GPUs.
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Introduction

Motivation

As new HPC clusters incorporate advanced processors such as the Intel Xeon Phi and Graphical
Processing Units (GPUs), code written for older architectures becomes less optimal. In order to
take advantage of these new technologies, the VPIC code must be adapted to run with portable
threading implementations as well as GPU support. The purpose of this project was to develop
and test implementations of OpenMP and CUDA on VPIC and explore areas performance
increases.

VPIC Background

VPIC is a particle-in-cell plasma simulation code designed to run with vector parallelization. It
has been used to simulate laser particle interactions for the NIF experiment as well as the phe-
nomenon of magnetic reconnection [14]. The code tracks the particle phase-space distribution
( f ) across the simulation space, described by the relativistic Maxwell-Boltzmann equations
[13]:

∂t f +
c
γ
~u ·∇ f +

q
mc

(
~E +

c
γ
~u×~B

)
·∇~u f = (∂t f )coll (16.1)

The fields are determined by current due to the motion of charged particles via Maxwell’s
equatoins. The simulation uses a regular Yee-mesh [87] and progresses by advancing fields
and particles based on their mutual interactions. Figure 16.1 details the main steps involved
in these advances, and demonstrates that VPIC is easily parallelizable since particles may be
advanced independently of one another (and likewise with fields).
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Figure 16.1: VPIC advances particles by leapfrogging positions and momenta, then accumu-
lates the particle current to calculate E- and B-fields (Verlet method) in each cell.

To maintain stability, VPIC implements tools to deal with various physics clashes:

1. Discretization vs Relativity (Courant condition): Σi
1
δi

< 1
cδt

2. Cyclotron frequency vs Nyquist frequency

3. Single precision error and Gauss’ law violations

Other details are out of the scope of this project but the code is open source and available
for viewing at github.com/losalamos/vpic.

Terminology

This project was focused on code development and run optimization and enlisted resources
that may not be widely known in some fields of computational physics. Furthermore, the vari-
ety of definitions from different information sources used in this project requires clarification.
The following is a list of definitions for hardware and software terms used specifically in this
project (these do not reflect standard terminology in HPC, but rather terms pulled from techni-
cal resources used in the course of this project):

• Processor / Compute Node - This is hardware-level architecture capable of computation
that may consist of one or more NUMA nodes.
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• NUMA node - This is the largest unit recognized by the system scheduler to which an
MPI rank can be assigned. A compute node typically has access to CPUs, L1-L3 caches,
and DDR memory.

• MPI rank / Processing Element - This is a logical unit of computation.

• Thread / Software thread - This is a sequential set of instructions to be carried out by a
CPU (without guarantee of collision-free memory access).

• CPU / Hardware thread / Hyperthread - This is the lowest level of thread processing
recognized by the system. These terms differ by the resources available (for instance,
Hyperthreads typically share a single ALU).

VPIC, which involves developing code to run with features specific to newer systems. The
following sections introduce some of the physical platforms

Intel Xeon Phi

The Intel Xeon Phi Knight’s Landing (KNL) processor has the following features:

• High Bandwidth Memory (HBM) - KNL features high-bandwidth memory (MCDRAM)
that transfers data up to five times faster than DDR. The HBM is also higher latency
since it is located on the exterior of the chip

• Variable NUMA node configurations - Figure 16.2 demonstrates some of the different
KNL configurations available; the options include:

– Sub-NUMA Cluster (SNC) - this splits the KNL into two or four compute nodes,
each with its own NUMA node

– Cache mode - this sets up the MCDRAM for usage as a memory cache after L2
(recognized as its own NUMA node). Cache misses are expensive due to latency.

– Flat mode - this sets up the 16 GB of MCDRAM for usage as a NUMA node
(without any CPUs available on that node)

Figure 16.2: KNL processors may be configured to contain different combinations of NUMA
nodes with different availability of HBM (left) KNL-quad flat (right) KNL SNC4-flat. Note
that in the flat-configuration, MCDRAM is recognized as a NUMA node despite having no
CPUs
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Levels of Parallellization

VPIC was designed to parallelized on three levels:

• MPI - Message Passing Interface is a system of communication between compute nodes
used to run large-scale parallel programs across many processors. MPI ranks are process-
ing elements that run a segment of a program in parallel across many compute nodes. For
example a KNL in SNC4 is seen as four separate compute nodes, each of which may be
assigned at least on processing element.

• Pthreads - A thread is an independent procedure to be processed by a CPU (with no
guarantee of avoiding data collision conditions). Pthreads are a standardized method of
managing and distributing threads for processing. Not all portions of VPIC are thread
parallel.

• Vector Intrinsics - Vector processing allows an instruction set to be applied to an entire
array of data (known as a vector) simultaneously. VPIC data structures were written with
the intent of using I used the AVX2 instruction set for testing vectorization with OpenMP
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VPIC with OpenMP

Overview of OpenMP

OpenMP is an API available to C/C++ that directs multi-threading and manages threads using
compiler directives and environment variables. Multi-processing instructions are passed using
“pragmas” which instruct the compiler to create and manage threads. This differs from the
POSIX threads (pthreads) API that requires low-level management of threads in the original
VPIC.

OpenMP environment variables may be used to specify how OpenMP threads should be
bound to CPUs in a given compute node or NUMA region. The set of CPUs made available
for a given thread to run on is known as the thread affinity.

OpenMP Implementation

VPIC’s EXEC PIPELINES Routine

The original VPIC code used hand-written boot and management routines for pthreads. At
the beginning of the simulation a team of threads would spawn, and then subsequent calls
to EXEC PIPELINES dispatched individual threads for advancing, accumulating, etc. The
following psuedocode gives an example of the use of OpenMP pragmas in the context of VPIC.

EXEC_PIPELINES(args):
#pragma omp parallel for num_threads(N_PIPELINES)
for each pipeline_id in N_PIPELINE:

do pipeline_routine(args+id)

Figure 16.3: Implementing OpenMP in this routine consists of preparing a team of threads
(using parallel) and then distributing the iterations of a for loop among the threads (using
for).

With OpenMP VPIC no longer manages thread booting and assignment. Instead, the
EXEC PIPELINES macro is wrapped in a pragma omp parallel for which simul-
taneously spawns teams and dispatches threads at each function call. The routine arguments
(typically arrays) are passed as shared variables to allow for simultaneous use by all threads,
and then each routine performs work on a section determined by the thread’s ID. In addition, I
implemented an OpenMP “helper” class that contains global variables related to threading and
housing for future checkpoint implementations.

Experiments with OpenMP

During the implementation, I attempted to implement OpenMP pragmas beyond the scope of
the EXEC PIPELINES macro. The following is a list of such attempts:

• ‘OpenMP ‘ordered” thread dispatch - In a sorted particle array, particles that have left
their original cell during the particle advance will need to look in a new section of the
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interpolator array for their respective E- and B-fields. It was reasoned that dispatching
threads to CPUs in order of their ID (such that threads dealing with consecutive chunks
of the particle array were placed together) may improve performance in the event that a
particle escapes to a new cell for which the interpolator data could be found in the shared
L2 cache being used by the adjacent CPU (which was tasked with working on particles
in this new cell). However, due to the interpolator array indexing scheme the probabil-
ity of such a scenario is quite small, and offered no net speedup when accounting for
slowdown during the ordered region. Furthermore, the KMP AFFINITY=compact
option automatically binds threads to CPUs in this manner.

• Single “parallel” team dispatch - There is reason to believe that removing repetitions
of parallel would improve application performance by means of reducing thread
management overhead [32]; similar effects have been investigated for other large-scale
physics simulations at LANL. A “high level OpenMP” implementation would involve
moving the parallel pragma outside of the individual routines, so that threads are
spawned once during the simulation and then given work by the individual for pragmas
in each routine. Determining the speedup effects of a high level OpenMP implementation
in VPIC is an area for further research.

OpenMP Testing

Energy Comparison

The results of the OpenMP implementation were verified against the original Pthreads results
across different vectorizations and processors. The first step for verification was comparing to-
tal system energy - Figure 16.4 demonstrates similarities in results between the former pthreads
implementation and the OpenMP version developed for this project. Similar comparisons of
total system energy were made across V0, V4, and V8 vectorizations, HSW and KNL pro-
cessors, from 4-64 threads on a single MPI rank, and for small and large decks. In general,
energies matched within 0.5%.

Figure 16.5 tracks the CPU time spent in the advance p routine across different numbers of
threads for the parameters used in Figure 16.4. Timing was chosen specific to advance p since
regions of the code do not support thread parallelization. These results (and other across differ-
ent processors and vectorizations) indicate that there is no immediate performance advantage
for OpenMP over pthreads.

Figure 16.6 provides a summary of the relative performance (wall time) of KNL-quad flat
(256 threads) and HSW (64 threads) using a single MPI rank and node over all three available
vectorizations. This demonstrates a need to optimize run options for KNL, including proper
use of HBM and SNC configurations.

Affinity Tests

A potential area for speedup was changing the OpenMP environment variables that determine
how threads are bound to processors. The settings for KMP AFFINITY are as follows:

• Compact - Each new thread is assigned to a CPU as close as possible to the previously
assigned CPU
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Figure 16.4: Comparing energies (dimensionless) between Pthreads and OpenMP implementa-
tion for V4 AVX2 HSW for a large test deck (700 iterations) shows that there is more variation
of total system energy within an implementation than between the implementations.
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Figure 16.5: Comparing advance p run time between Pthreads and OpenMP implementa-
tion for the system parameters of Figure 16.4 reveals no immediate performance benefit for
OpenMP over the original implementation. Performance decreases as the number of threads
exceeds the available CPUs on HSW

Figure 16.6: Improvements in runtime from using KNL processors and vectorization were
found to be unexpectedly small in the duration of this project
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• Scatter - Threads are distributed as evenly as possible across all available CPUs (for
instance, if four compute nodes are available, threads are distributed to one CPU in each
round-robin style)

• Disabled - Threads are assigned based on the local system preferences

Figures 16.7-16.8 compare the effects on performance that result from using OpenMP affin-
ity options on a small deck. In general, “compact” resulted in the fastest VPIC runtime on a
single HSW node, but slower runtime on KNL. Cases with more than one node were not in-
vestigated and large decks were not investigated.

Figure 16.7: Setting the KMP AFFINITY variable for V0 runs using a HBM deck resulted in
different performance trends on HSW (left) vs KNL (right).

Figure 16.8: V4 HBM deck performance on HSW (left) vs KNL (right).

Work is in progress to test larger decks in the same manner to guage the effects of thread
affinities on the KNL processor.

NUMA region / HBM Tests

To test performance using HBM on KNL nodes, I used the numactl utility with the OpenMP
VPIC to provide instructions for NUMA region preference. The option --preferred=1 in-
structs the application to preferentially allocate memory and perform searches in HBM (NUMA
node 1). The predicted effect of this option for small decks would be significant speedup since
HBM transfers occur 5x faster than DDR. For larger decks, there is potential for the latency
of HBM transfers to cause slowdown, such that the effect of the --preferred=1 is not
obvious.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 194



VPIC on Future Architectures

Figure 16.9: Runs on KNL with and without HBM were compared using numactl
--preferred to designate memory storage. Runs using a < 16 GB deck (right) showed
no advantage using HBM (“numa1”) vs. no HBM (“numa0”) compared to runs using a > 16
GB deck (left)

Figure 16.9 demonstrates no significant advantage using HBM on a large deck compared to
a small deck. This demonstrates a need for a standardized HBM deck that is guaranteed to use
less than 16 GB, along with more specific run options to utilize the KNL HBM. More work is
needed to find the cause for this unexpected behavior.

aprun Tests

The aprun program is used to launch multi-node jobs on Cray HPC machines. As with
numactl, aprun provides options that may speed up an application depending on the programs
memory and threading needs. One point of investigation was the -cc option, which binds
processing elements to CPUs. The depth option assigns each processing element a cpumask
for as many child threads as the MPI rank has. The numa node option places each processing
element on a single NUMA node (this is equivalent to the former option in many cases).

Some preliminary results of optimizing runs using aprun:

• The default setting -cc cpu hurts performance (by assigning one MPI rank per CPU).
Runs should be specified with any other option (e.g. aprun -cc depth

• aprun should be launched with preferential use of HBM NUMA nodes for KNL runs
using more than one node

• -cc numa node would likely improve performance on KNL-SNC4 flat but we were
unable to obtain comparison results on > 1 node

Future Work

The investigation into OpenMP performance and optimization VPIC on KNL is an ongoing
task. The following items detail areas where more research would be appropriate:
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• OpenMP improvements - The current OpenMP implementation lacks checkpoint support,
which will be necessary for larger runs. Additionally, an advanced implementation of
OpenMP (“high level OpenMP” or lower-level implementations) could offer speedup.

• Standardized decks and post-processing - The metric for comparison of VPIC runs and
the decks themselves were refined as the project progressed. There is a need for stan-
dardized decks (HBM and no HBM) such that results for advance p timing can be mean-
ingfully compared.

• KNL SNC4 vs quad - This work did not investigate the performance comparison between
different KNL configurations.

• Multi-node - Reported results were for single-node runs only; future work should inves-
tigate the effects on more than one node.

• KNL thread affinity - initial results of testing OpenMP thread affinities on KNL resulted
in unexpected effects on performance.Further testing is needed to find an optimal thread
affinity scheme.

Improvements

VPIC on GPUs

Overview of GPU programming

GPUs are ideal for highly parallel tasks that can be divided into thousands of independent
pieces. Unlike CPUs which typically have up to 64 cores, GPUs have many thousands of
simple compute cores. These cores, called stream processors (SP) are grouped into sets of
128-192 called stream multiprocessors (SM). To utilize these resources, programs will need to
be reworked into small chunks of work that can be processed in parallel.

CUDA API

CUDA is an extension of C that allows programmers to dispatch work to GPUs. In CUDA
terminology, the host (CPU) calls kernels which run on the device (GPU). The kernel is a
specialized function written for the GPU that is executed in parallel by many CUDA threads.
A CUDA source file will contain a mixture between host and device code. The modifiers
global or device are put on kernels to indicate that they should be compiled for the

device. Kernels are executed with the following syntax:

kernel<<<n,m>>>(args)

The n and m indicate the number of blocks and threads per block respectively to run the kernel
with. This is discussed in more detail in the next section.
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Thread Hierarchy

Kernels are executed by a grid of n blocks of m CUDA threads each. The blocks and threads
can be indexed linearly or be arranged in a 2D or 3D array. This thread division is determined
when the kernel is called.

dim3 grid(16,16,16);
dim3 threadsPerBlock(32,32);
kernel<<<grid, threadsPerBlock>>>(args);

Each block can contain up to 1024 CUDA threads. The threads in a block are executed in sets
of 32 called warps. Warps are the atomic unit of execution for a GPU and operate in a same
instruction, multiple data (SIMD) manner. That is, each thread in a warp will execute the same
machine instruction on its own data item at the same time. If two threads in a warp need to
take different branches of a conditional, all the threads in the warp will execute twice, once
following the first branch and again following the second branch. This warp divergence can
cause costly performance hits.

Memory management

The host and device have separate memory spaces. Memory must be transferred between the
CPU’s RAM and the onboard memory on the GPU. This memory management can be done
explicitly or implicitly through Unified Memory.

• Manual memory management - With this memory management scheme, all device
memory allocations, frees, and transfers are explicitly done in the host code. CUDA
features a number of functions to control the device memory from the host such as
cudaMalloc(), cudaMemcpy(), and cudaFree().

• Unified Memory - In recent versions (6.0 and onwards), CUDA implements a feature
called Unified Memory. With the Unified Memory model, the host and device can share
memory without manually transferring it. Memory allocated with cudaMallocManaged()
will be usable from both the device and the host. However, this does not mean that the
device and host can directly access each other’s memory. Instead, the memory is du-
plicated on the host and device memory. The memory is implicitly copied between the
host’s and device’s copies during synchronization.

For performance reasons, manual memory management was used in this project.

CUDA implementation of VPIC

Adapting VPIC to run on GPUs involved reworking key parts of the code. The focus of
this project was on the core particle advance routine advance p. This routine was adapted
into a CUDA kernel. With the current (incomplete) implementation, only the advance p
routine runs on the GPU. This means that before and after every call to advance p, the
advance p pipeline args structure must be copied to and from the device respectively.
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Current Accumulation

In order to calculate the fields for the next time step, the current caused by the motion of the
particles must be accumulated. The current contribution of each particle must be added to an
array storing the current in each cell. This accumulation must be handled carefully. If two
threads try to update the same element of the array at once, there will be a data race where the
threads thrash each other’s updates.

The reference CPU implementation of VPIC avoids this issue by giving each thread a du-
plicate accumulator array. Thus, each thread will have exclusive access to its own array. Later,
these arrays will be summed together to get the complete current array. This solution works
when there are relatively few threads per processor (up to 64 in the reference implementation).
However, the memory cost becomes prohibitive when the number of threads is scaled up to the
tens of thousands required for a GPU implementation.

In the GPU implementation, this was solved through the use of atomics. When one thread
atomically updates a data element, all other threads are locked out for the duration of the
update. This solves the issue of data races in the accumulator update. As a result, each thread
does not require exclusive access to its own array. However, there will be significant slowdowns
if two threads attempt to update the same cell at the same time.

To minimize the likelihood of access collisions, 32 accumulator arrays were used. The
access scheme is as follows: The first thread in each warp will update the first array, the second
thread will update the second array, and so on. Thus, in a given warp, there cannot be any
race conditions. Since the particles are roughly sorted spatially in the particle array, different
sections of the array will typically contain particles that reside in different cells of the grid.
This means that the blocks processing these sections will will have a minimal chance of an
access collision.

Future work

Only the core advance p routine has been adapted into a CUDA kernel. This means that
the memory must be transferred between the host and device before and after every call to
advance p. To achieve maximum performance, this data movement must be minimized. If
all the routine in each time step ran on the GPU, the costly movement of data between host
and device would be eliminated. In future work, all the routines in the simulation advance loop
should be converted into CUDA kernels.
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Figure 16.10: Workload and resource distribution between blocks of threads for the
advance p routine. The active warp of 32 threads in each block share the 32 accumula-
tor arrays. The first thread in each warp updates a different cell in the first accumulator array
and so on.
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[58] Rainald Löhner. Applied CFD Techniques: An Introduction based on Finite Element
Methods. Wiley, Chichester, England, first edition, 2001.

[59] N. H. Magee, J. Abdallah, J. Colgan, P. Hakel, D. P. Kilcrease, S. Mazevet, M. Sherrill,
C. Fontes, and H. .L. Zhang. Los alamos opacities: Transition from ledcop to atomic.
Atomic Processes in Plasmas, 730:168–179, 2004.

[60] W. Martin. The Application of the Finite Element Method to the Neutron Transport Equa-
tion. Xerox University Microfilms, Ann Arbor, Michigan, 1976.

[61] John Richard Maw. A relatively simple analytical equation of state for liquid metals. AIP
Conference Proceedings, 1426(1), 2012.

[62] Chad D. Meyer, Dinshaw S. Balsara, and Tariq D. Aslam. A second-order accurate su-
per TimeStepping formulation for anisotropic thermal conduction: Super TimeStepping
scheme for TC. 422(3):2102–2115.

[63] Chad D. Meyer, Dinshaw S. Balsara, and Tariq D. Aslam. A stabilized
runge–kutta–legendre method for explicit super-time-stepping of parabolic and mixed
equations. 257:594–626.

[64] J. J. Monaghan. Smoothed particle hydrodynamics. Annual Review of Astronomy and
Astrophysics, 30(1):543–574, 1992.

[65] B.T. Nadiga. Nonlinear evolution of a baroclinic wave and imbalanced dissipation. J.
Fluid Mech., 756:965–1006, 2014.

[66] UIUC Parallel Progamming Laboratory. Charm++: Programming model. http://
charmplusplus.org/progmodel/.

[67] KS Raman, VA Smalyuk, DT Casey, SW Haan, DE Hoover, OA Hurricane, JJ Kroll,
A Nikroo, JL Peterson, BA Remington, et al. An in-flight radiography platform to measure
hydrodynamic instability growth in inertial confinement fusion capsules at the national
ignition facility. Physics of Plasmas (1994-present), 21(7):072710, 2014.

[68] T. Rauscher and F.-K. Thielemann. Tables of Nuclear Cross Sections and Reaction Rates:
AN Addendum to the Paper “ASTROPHYSICAL Reaction Rates from Statistical Model
Calculations” (). Atomic Data and Nuclear Data Tables, 79:47–64, September 2001.

[69] Scott R. Runnels (editor). Final report from the 2012 computational physics student
summer workshop. Technical report, Los Alamos National Laboratory, 2012.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 204



References

[70] Scott R. Runnels (editor). Final report from the 2013 computational physics student
summer workshop. Technical report, Los Alamos National Laboratory, 2013.

[71] Scott R. Runnels (editor). Final report from the 2014 computational physics student
summer workshop. Technical report, Los Alamos National Laboratory, 2014.

[72] Scott R. Runnels (editor). Final report from the 2015 computational physics student
summer workshop. Technical report, Los Alamos National Laboratory, 2015.

[73] J. D. Schwarzkopf, D. Livescu, J. R. Baltzer, R. A. Gore, and J. R. Ristorcelli. A two-
length scale turbulence model for single-phase multi-fluid mixing. Flow, Turbulence and
Combustion, 96(1):1–43, 2016.

[74] T. Sjostrom and J. Daligault. Fast and accurate quantum molecular dynamics of dense
plasmas across temperature regimes. Physical Review Letters, 113:155006, 2014.

[75] Khodadoust A. Alonso J. Darmofal D. Gropp W. Lurie E. Mavriplis D. Slotnick, J. Cfd
vision 2030 study: A path to revolutionary computational aerosciences. Technical report,
National Aeronautics and Space Administration, 2014.

[76] Liam G Stanton and Michael S Murillo. Ionic transport in high-energy-density matter.
Physical Review E, 93(4):043203, 2016.

[77] C. E. Starrett. Kubo-greenwood approach to conductivity in dense plasmas with average
atom models. High Energy Density Phys., 19:58–64, 2016.

[78] J Thomas. Resonant fast-slow interactions and breakdown of quasi-geostrophy in rotating
shallow water. J. Fluid Mech., 788:492–520, 2016.

[79] Philip A. Thompson. Compressible Fluid Dynamics (Advanced engineering series).
McGraw-Hill Inc.,US, 1972.

[80] Albert C. Thompson (editor). X-ray data booklet. Technical report, Lawrence Berkeley
National Laboratory, 2009.

[81] Mark Tuckerman. Thermodynamic quantities in terms of g(r), Feb 2000.

[82] G. K. Vallis. Atmospheric and Oceanic Fluid Dynamics. Available from
www.princeton.edu/˜gkv/aofd.(To be published by Cambridge University Press.), 2005.

[83] Hundsdorfer W. H. Verwer, J. G. and B. P. Sommeijer. Convergence properties of the
runge-kutta-chebyshev method. Numerische Mathematik, 57(1):157–178, 1990.

[84] J. Waltz, N.R. Morgan, T.R. Canfield, M.R.J Charest, L.D. Risinger, and J.G. Wohlbier.
A three-dimenstional finite element arbitrary lagrangian-eulerian method for shock hydro-
dynamics on unstructured grids. Computers and Fluids, 92:172–187, 2013.

[85] T. G. White, S. Richardson, B. J. B. Crowley, L. K. Pattison, J. W. O. Harris, and G. Gre-
gori. Orbital-free density-functional theory simulations of the dynamic structure factor of
warm dense aluminum. Physical Review Letters, 111:175002, 2013.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 205



References

[86] Mcwilliams J.C. Yavneh, I. Breakdown of the slow manifold in the shallow-water equa-
tions. Geophys.Astrophys. Fluid Dynamics, 75:131–161, 1994.

[87] Kane S. Yee. Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3),
1966.

[88] C. Yehnert. Finite-Element Solution of the Two-Dimensional Neutron Transport Equa-
tion. University Microfilms International, Ann Arbor, Michigan, 1978.

[89] P. A. Young and D. Arnett. Observational Tests and Predictive Stellar Evolution. II.
Nonstandard Models. Astrophysical Jounrnal, 618:908–918, January 2005.

[90] P. A. Young, C. L. Fryer, A. Hungerford, D. Arnett, G. Rockefeller, F. X. Timmes, B. Voit,
C. Meakin, and K. A. Eriksen. Constraints on the Progenitor of Cassiopeia A. Astrophysi-
cal Jounrnal, 640:891–900, April 2006.

[91] P. A. Young, C. Meakin, D. Arnett, and C. L. Fryer. The Impact of Hydrodynamic Mixing
on Supernova Progenitors. Astrophysical Jounrnal, Letters, 629:L101–L104, August 2005.

Final Reports: 2016 Computational Physics Student Summer Workshop Page 206


